
LOAN DOCUMENT
PHOTOGRAPH 1111 SHEET

Nr

'~ El U- I OPY

SR T TT TORY

Approved for public release;N

Distribution Unlimited !D

DDISTRIBUTION STATEMET
Ditrbuio Unimtd

DTrlC TRAlCr "" '=" ELECTE
JUSTIFICATION l Tw

OCT251990W

'-IONI E Ti
DISTIBUTION/

SVAiLABLZrY CODES

1 TRBMNAVAZAILITY AMM SPAA H
DATE ACCESSIONED

A

DISTRIBUTION STAMP R

E
DATE RETURNED

. 130

DATE RECEIV IN DTIC REGISTERED OR CEIRTEFIED NUMBER

PHOOGLRAP T= SHEE AND RETURN TO DTIC-FDAC

OTtO DO- .W o 3u m EN

LOAN DOCUMENT

WRDC-TR-90-8024

cGEOMETRIC MODELING APPLICATION INTERFACE PROGRAM
N
00

(MODEL ACCESS SOFTWARE USER'S MANUAL

United Technologies Corporation
Pratt and Whitney
Government Products Division
P.O. Box 9600
West Palm Beach, Florida 33410-9600

NOVEMBER 1990

Final Report For Period August 1985 - March 1989

Approved for public release; distribution unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At TIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and Is approved for publica-
tion.

Charles Gilman Walter H. Reimann, Chief
Project Manager Computer-Integrated Mfg. Branch

FOR THE COHMANDER

BRUCE A. RASMUSSEN
Chief, Integration Technology Division
Manufacturing Technology Directorate

If your address has changed, if you wish to be removed from our mailing
list, or If the addressee is no longer employed by your organization please
notify WR!lC/MTT , WPAFB, OH 45433-6533 to help us maintain a current
mailing list.

Copies of this report should not be-returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

-UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAG

REPORT DOCULONTATION PAGE

la. REPORT SECURITY CLASSIFICATION 1b, RESTR XVE MARKINGS
Unclassi fied

Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBCT121AVAILABILITY OF REPORT
Approved for public release; distribution

2b. OECLASSIFICATION/OOWNGRAOING SCHEDE is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPOT NAW(S)
FR 20359 WRDC-TR-90-8024

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7A. NWIE OF MONITORING ORGANIZATION
United Technologies Corporation (If applicable) Wright Research and Development Center
Pratt & Whitney Manufacturing Technology Directorate
Government Products Division (P&) (WRr/MTT

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, TR and ZIP Code)

P.O. Box 9600 Wright-Patterson AFB OH 45433-6533
West Palm Beach,
Flor4da 33410-9600

$a. NAME OF FUNDING/SPONSORING I 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

I F3361S-85-C-$122

Sc. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification)
GEOMETRIC MODELING APPLICATIONS INTERFACE PROGRAM 01.60 5602 6 74

12. PERSONAL AUTHOR(S)
D. Emerson, C. Magnuson, C. Van Wie. R. Heldoefe, P. Dorr

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

FinalI FROM.] AugL TO 31 Mar 82 November 1990 195
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify
by block number)FIELD IGROUP SUB. GR. Geometric Modeling Applications Interface Program

Product Definition Data Interface
I Turbine B;ades and Disks

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This User's Manual provides a guide for the use of Model Access Software for the Computer Program Configuration
Item (CPCI) identified as the GMAP (Geometric Modeling Applications Interface Program). U.S. Air Force
Contract F33615-8S5-C-5122. It includes descriptions of the Model Access Software and Name Value Interface
capabilities.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED X- SAME AS RPT. - DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPMONE NUMBER I 22c. OFFICE SYMBOL

(Include Area Code)
David Judson (513) 255-7371 WRDC/MTI

O FORM 1473. 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

SMLASSIFIED
SECURITY CLASSIFICATION OF THI$ PAGE

18. Subject Terms (Continued)
Product Life Cycle
Engineering
Nenufacturi ng
Interface
Exchange Format
CAD
CAM
CINIBIS
RFC
System Translator
Schema Nanager
Hodel Access Software
Name/Value Interface

UNCLASSI FIED
SECURITY CLASSIFICATION OF THIS PAGE

CI UM580240031U

This Model Access Software User's Manual describes work performed under
Air Force Contract F33615-85-C-5122, Geometric Modeling Applications
Interface Program (GKAP), covering the period 1 August 1985 to 31 July 1988.
This User's Manual provides a guide for the use of Model Access Software
under this contract which is sponsored by the Computer Integrated
Manufacturing Branch, Materials Laboratory, Air Force Systems Command, Wright
Air Force Base, Ohio 45433-6533. The CHAP Project Manager for the Air Force
is Mr. Charles Gilman.

The primary contractor Is Pratt & Whitney, an operating unit of United
Technologies Corporation. Mr. Richard Lopatka is managing the GMLP project
at Pratt & Whitney. Ms. Linda Phillips is the Program Integrator. Mr. John
Hamill is the Deputy Program Manager.

McDonnell Aircraft Company is the subcontractor responsible for the Model
Access Software work. Mr. Jerry Weiss is the GQAP Program Manager at
McDonnell Aircraft and Mr. Herb Ryan is the Deputy Program Manager.

NOTE: The number and date in the upper right corner of each page in this
document Indicate that It has been prepared in accordance to the
ICAM CH Life Cycle Documentation requirements for a Configuration
Item (CI).

U'.
111

CI UM560240031U
July 1989

TABLE OF CONTENTS

SECTION 1. SCOPE
1.1 Identification 1-1
1.2 Introduction ... 1-1
1.3 Other System Manuals 1-1
1.4 Approach .. 1-2

SECTION 2. REFERENCES e..................................... 2-1
2.1 Reference Documents 2-1
2.1.1 Military .. 2-1

2.1.2 Comercial .. 2-3
2.1.3 Standards Orgsanizatlons 2-4
2.2 Terms and Acronym 2-4
2.2.1 Terms Used In GAP 2-4
2.2.2 Acronyms Used In IAP 2-18

SECTION 3. SYSTEM OVERVIEW .. 3-1
3.1 System Architecture 3-1
3.1.1 System Interfaces 3-1
3.1.2 System Environment 3-1
3.2 Schema Manager ... 3-3
3.2.1 Physical Schema 3-3
3.3 EF ... o.......... 3-3
3.4 System Translator 3-3
3.5 Model Access Software. 3-3
3.5.1 Data Item 3-4
3.5.1.1 Ent ity-o......o........o...... 3-4
3.5.1.2 List 3-6
3.5.2 Interface Parameters 3-6
3.5.2.1 Data-Name Parameters 0 3-6
3.5.2.2 Data-Type Parameters 3-7
3.5.2.3 Formal Data Types 3-7
3.5.3 Memory Manager................................. 3-8
3.6 NVI... 3-8

SECTION 4. MODEL ACCESS SOFTWARE (MAS) OPERATIONS
AND ENVIRONMENT 4-1

4.1 Introduction.................................... .. 4-1
4.2 Initialization/Deletion of the

ElAS Working Form (WF)........................ 4-2
4.3 Entity Operations _......o....o.... o......4-5
4.*3. 1 Create OperatIOUs............... .o.......... 4-5
4.3.2 Query Operations.... 4-8
4.3.3 Update Operations. 4-12
4.3.4 Delete Operations.. 4-14

iv

CI UM560240031U
July 1989

TABLE OF CONTENTS (contd.)

PaLe

4.3.5 Activate Operations 4-21
4.3.6 Application Flag Operations 4-25
4.4 List Operations 4-38
4.4.1 Create Operations - Application Lists 4-39
4.4.2 Query Operations - Application Lists

and Constituent Lists 4-54

4.4.3 Update Operations - Application Lists
and Constituent Lists 4-61

4.4.4 Update Operations - Application Lists Only 4-68
4.4.5 Boolean Operations - Application Lists

and Constituent Lists 4-73

4.4.6 Delete Operations - Application Lists Only 4-77
4.5 Execute Operations 4-82
4.6 General Purpose Utilities 4-94
4.7 Special Purpose Utilities 4-99
4.8 IBM/MVS Environment 4-105
4.8.1 Compiling Considerations 4-105
4.8.2 Considerations When Using the XEQ

Routines (MAEXEQ, MALXEQ, MAIKEQ,
NAECXQ, MAEUXQ, MALSRT) 4-105

4.8.3 Linking Considerations 4-106
4.9 VAX/VKS Environment 4-106

4.9.1 Compiling Considerations 4-106
4.9.2 Considerations When Using the XEQ

Routines (HAEXEQ, MALXEQ, HAJXEQ,
MAECXQ, 1AEUXQ, MIALSRT) 4-107

4.9.3 Linking Considerations 4-108

SECTION 5. NAME VALUE INTERFACE 5-1
5.1 Overview .. 5-1

5.2 Direct Query/Store 5-1

5.2.1 Function .. 5-1
5.2.2 Direct Query Format 5-3
5.2.3 Direct Store Format 5-4
5.3 Procedural Query 5-4
5.3.1 Function5-4
5.3.2 Format 5-6
5.4 Utilities ... 5-7

5.4.1 Function .. 5-7

5.4.2 Attribute Data Type Query Format 5-7
5.5 IBM/MVS Environment 5-9
5.5.1 Compiling Considerations 5-9
5.5.2 Include Files 5-9

V

i i . r.----as-- mram~,--= mm m Now=m

CI UM560240031U
July 1989

5.5.3 Linkage Considerations 5-10
5.5.4 Processing Considerations 5-10
5.6 VAX/VMS Environment 5-12
5.6.1 Compiling Considerations 5-12
5.6.2 Include Files 5-12
5.6.3 Linkage Considerations 5-13
5.6.4 Processing Considerations 5-14

APPENDIX A MODEL ACCESS SOFTWARE (HAS) CALLING
PARAMETER TYPE InEX A-1

APPENDIX B ALPHABETICAL MODEL ACCESS SOFTWARE (HAS)
ROUTINE INDEX B-1

APPENDIX C MODEL ACCESS SOFTWARE (HAS) RETURN CODE INDEX C-1

APPENDIX D GENERAL TECHNIQUES/GUIDELINES D-1

APPENDIX E RUN-TIME ENVIRONMENT E-1

APPENDIX F SAMPLE PROGRAMS F-1

vi
/

CI UM560240031U
July 1988

LIST OF ILLUSTRATIONS

Fixure Title e

3-1 GNAP/PDDI System Architecture 3-2
3-2 LINE: kn Entity With Constituents 3-5
4-1 HAS Interface Operations 4-1
4-2 Execute Operation ... 4-83

vii

CI UM560240031U
July 1989

LIST OF TABLES

Table ile PaRe

4-1 CREATE ROUTINES 4-5
4-2 QUERY ROUTINES ... 4-8
4-3 UPDATE OPERATIONS .. 4-12
4-4 DELETE RULES ... 4-15
4-5 DELETE ROUTINES .. 4-16
4-6 ACTIVATE ROUTINES .. 4-21
4-7 APPLICATION FLAG OPERATIONS.................................. 4-25
4-8 CREATE ROUTINES ... 4-39
4-9 QUERY OPERATIONS - APPLICATION AND

CONSTITUET LISTS .. 4-54
4-10 UPDATE OPERATIONS - APPLICATION AND CONSTITUENT LISTS 4-61
4-11 UPDATE OPERATIONS - APPLICATION LISTS 4-68
4-12 BOOLEAN ROUTINES ... 4-73
4-13 DELETE ROUTINES .. 4-77
4-14 EXECUTE ROUTINES ... 4-84
4-15 GENERAL PURPOSE UTILITIES 4-94
4-16 SPECIAL PURPOSE UTILITIES 4-99

viii

conwvm

CI UM560240031U
July 1989

SECTION 1

SCOPE

1.1 Identification

This User's Manual provides a guide for the use of Model Access Software
developed for the Product Definition Data Interface (Project 5601) and the
Name Value Interface software developed for the Geometric Modeling
Applications Interface Program. The Product Definition Data Interface
project was developed under Air Force Contract F33516-82-C-5036 and the
Geometric Modeling Applications Interface Program was developed t .der Air
Force Contract F33615-85-C-5122.

1.2 Introduction

Model Access Software capabilities documented in this manual include:

o Access Software Initialization

o Entity Operations

o List Operations.

NVI capabilities documented in this manual include:

o Direct Query/Store

o Procedural Query.

This software was developed on IBM 43xx and 308=c computers and migrated
to DEC VAX 11/780 and other computers. The environmental requirements are
described in Section 3.

This manual does not address local (native) system or computing
environment documentation.

This manual addresses IBM procedures and terminology only.

1.3 Other System Manuals

An associated Operator's Manual (0M560240001U) describes the system
operation and installation procedures. Procedures are also included for

i-1

L

CI UM560240031U
July 1989

migrating the software from IBM/MVS to other computer systems (i.e., VAX).
The Operator's Manual is intended for use by computer operators and
programming personnel.

An associated Translator User's Manual (UM560240021U) is provided for
users of the System Translator, and a Schema Manager Users Manual
(UM560240011U) is provided for users of the Schema Manager.

The Software Components Product Specification (PS560240032U) provides
routine descriptions, data dictionary listings and system messages for system
maintenance purposes.

1.4 Aoroac

This User's Manual is divided into five main sections and six
appendices:

Section 1 - Scope of this document.

Section 2 - Reference documentation applicable to GMAP and this
document.

Section 3 - The PDDI/CMAP architecture at a high level and
introduction to the use of the Model Access Software.

Section 4 - Entity and List Operations needed to access the data
structures passed back to the Application program.

Section 5 - Description of the use of the Name Value Interface.

Appendices:

Appendix A - Model Access Software Calling Parameter Index

Appendix B - Alphabetical Model Access Software Routine Index

Appendix C - Model Access Software Return Code Index

Appendix D - General Techniques/Guidelines

Appendix E - Run Time Environment

Appendix F - Sample Programs.

1-2

carWmn

CI UM560240031U
July 1989

SECTION 2

REFERENCES

2.1 Reference Documents

The following technical reports, specifications, standards, and other
documents have been referred to or are relevant to this Model Access
Software User's Manual.

2.1.1 Military:

Integrated Computer Aided Manufacturing (ICAM) Architecture, Vol. 4,
Function Modeling Manual (IDEFS), USAF Report No. AFWAL-TR-81-4023,
June 1981.

Integrated Computer Aided Manufacturing (ICAM) Architecture, Vol. 5,
Information Modeling Manual (IDEFl), USAF Report No. AFWAL-TR-81-4023,
June 1981.

Integrated Computer Aided Manufacturing (ICAM) Documentation Standards,
IDS 150120000C, September 1983.

PDDI System Specification, Product Definition Data Interface (PDDI)
Project 5601, Contract F33516-82-5036, July 1984.

PDDI System Specification-Draft Standard, Product Definition Data
Interface (PDDI), Project 5601, Contract F33516-82-5036, July 1984.

Information Modeling Manual IDEF-Extended (IDEFIX) Integrated
Information Support System (IISS), ICAM Project 6201, Contract
F33615-80-C-5155, December 1985.

Interim Technical Report No. 1 (ITR560240001U)
"Geometric Modeling Applications Interface Program" February 1986
(Period 1 August 1985 - 31 October 1985).

Interim Technical Report No. 2 (ITR560240002U)
"Geometric Modeling Applications Interface Program" May 1986
(Period 1 November 1985 - 31 January 1986).

Geometric Modeling Applications Interface Program (GMAP) Scoping
Document, CI SD560240001U, May 1986.

Interim Technical Report No. 3 (ITR560240003U)
"Geometric Modeling Applications Interface Program" August 1986
(Period 1 February 1986 - 30 April 1986).

2-1

|00| | |I

CI UM560240031U
July 1989

Interim Technical Report No. 4 (ITR560240004U)
"Geometric Modeling Applications Interface Program" November 1986
(Period 1 May 1986 - 31 July 1986).

Geometric Modeling Applications Interface Program (GMAP) Needs Analysis
Document, CI NAD560240001U, November 1986.

Interim Technical Report No. 5 (ITR560240005U)
"Geometric Modeling Applications Interface Program" January 1987
(Period 1 August 1986 - 31 October 1986).

Geometric Modeling Applications Interface Program (GMAP) System
Requirements Document, CI SRD560240001U, February 1987.

Geometric Modeling Applications Interface Program (GMAP) State of the
Art Document, CI SAD560240001U, March 1987.

Interim Technical Report No. 6 (ITR560240006U)
"Geometric Modeling Applications Interface Program" May 1987
(Period 1 November 1986 - 31 January 1987)

Geometric Modeling Applications Interface Program (GMAP) System
Specification (Volumes I-IV), CI SS560240001U, July 1987

Interim Technical Report No. 7 (ITR560240007U)
"Geometric Modeling Applications Interface Program," August 1987
(Period 1 February 1987 - 30 April 1987).

Geometric Modeling Applications Interface Program (GMAP) System Design
Specification, CI SDS560240001U, November 1987.

Geometric Modeling Applications Interface Program (CMAP) to Retirement
for Cause Interface Development Specification, CI DS560240011U, November
1987.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface Development Specification, CI
DS560240021U, November 1987.

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface As-designed Product Specification, CI PS560240011U,
December 1987.

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface Unit Test Plan, CI UTP560240011U, December 1987.

2-2

ewnm

CI UM560240031U
July 1989

Interim Technical Report No. 8 (ITR560240008U)
"Geometric Modeling Applications Interface Program," December 1987
(Period 1 May 1987 - 31 July 1987).

Interim Technical Report No. 9 (ITR560240009U)
"Geometric Modeling Applications Interface Program," March 1988
(Period 1 August 1987 - 31 October 1987).

Geometric Modeling Applications Interface Program (GMAP) System Test
Plan, CI STP560240001U, March 1988.

Product Definition Data Interface (PDDI)/Geometric Modeling Applications
Interface Program (GMAP) Deliverables Roadmap Document, March 1988.

Geometric Modeling Applications Interface Program (GCAP) to Integrated
Blade Inspection System Interface Unit Test Plan, CI UTP560240021U,
March 1988.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface As-designed Product Specification, CI
PS560240021U, March 1988.

Geometric Modeling Applications Interface Program (GMAP) System
Component As-designed Product Specification, CI PS560240031U, March 1988.

Interim Technical Report No. 10 (ITR560240010U)
"Geometric Modeling Applications Interface Program," August 1988
(Period 1 November 1987 - 31 January 1988).

Interim Technical Report No. 11 (ITR560240010U)
"Geometric Modeling Applications Interface Program," August 1988
(Period 1 February 1988 - 30 April 1988).

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface User Operator Manual, CI U/OM560240011U, August 1988.

Interim Technical Report No. 12 (ITR560240012U)
"Geometric Modeling Applications Interface Program" October 1988
(Period 1 May 1988 - 31 July 1988).

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface Unit Test Report, CI UTR560240011U, November 1988.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface Unit Test Report, CI UTR5602421U,
November 1988.

2-3

cohlot44W

CI UM560240031U
July 1989

Geometric Modeling Applications Interface Program (GMAP) System
Translator User Manual, CI UM560240021U, November 1988.

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface As Built Product Specification, CI PS560240012U,
February 1989.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface As-built Product Specification, CI
PS560240022U, February 1989.

Geometric Modeling Applications Interface Program (GMAP) System
Components Operator's Manual, CI OM560240001U, February 1989.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface User/Operator Manual, CI
U/OM560240021U, February 1989.

Geometric Modeling Applications Interface Program (GMAP) Schema Manager
User's Manual, CI UM560240011U, February 1989.

Interim Technical Report No. 13 (ITR560240013U)
"Geometric Modeling Applications Interface Program" February 1989

(Period 1 August 1988 - 31 October 1988).

Interim Technical Report No. 14 (ITR560240014U)
"Geometric Modeling Applications Interface Program" July 1989
(Period 1 November 1988 - 31 January 1989).

Geometric Modeling Applications Interface Program (GMAP) Model Access
Software User Manual, CI UM560240031U, July 1989.

Geometric Modeling Applications Interface Program (GMAP) PDD Editor
User/Operator Manual, CI U/0M560240031U, July 1989.

Demonstration Model Descriptions for Geometric Modeling Applications
Interface Program (GMAP), CI TTD560240001U, July 1989.

Product Information Exchange System (PIES) User Manual for Geometric
Modeling Applications Interface Program (GMAP), CI TTD560240002U, July
1989.

2.1.2 Commercil

A Practical Guide to Splines, C. de Boor, Applied Mathematical Sciences,
Vol. 27, Springer-Verlag.

24

CI UM560240031U
July 1989

Desian of Database Structures, T. J. Teorey and J. P. Fry,
Prentice-Hall, Inc., Englewood Cliffs, N.J.

Differential Geometry of Curves and Surfaces, M. P. de Carmo,
Prentice-Hall, Inc., 1976.

IDEFIX Readers Reference, D. Appleton Company, December 1985.

Ifentification of Product Definition Data in a Manufacturing Enterorise
-- A Case Study. R. Lessard, United Technologies Research Center and R.
Disa, Pratt & Whitney, March 1986.

Use of Product Models in a CIM Environment, D. Koziol Emerson and K.
Perlotto, Pratt & Whitney, March 1987.

Technical Issues in Product Data Transfer, Richard Lopatka, Pratt &
Whitney, September 1987.

Implementation of GMAP Technolvaies for Logistic Support Applications,
Donald L. Deptovicz, Pratt & Whitney, January 1988.

Barriers to PDES Approval, Anthony Day, Sikorsky, and Richard Lopatka,
Pratt & Whitney, April 1988.

PDD: Implementation Issues, Diane Emmerson and Priscilla Blasko, United
Technologies Corporation, Proceedings of AUTOFACT '88, October 1988.

Geometric Modelina Applications Interface Program: A Prototype for
Active File Exchange, Linda Phillips and Diane Emmerson, United
Technologies Corporation, National Computer Graphics Association
Conference, April 1989.

2.1.3 Standards Organizations

ANSI Y14.5M, Dimensioning and Tolerancing.

"The ANSI/X3/SPARC DBMS Framework Report of the Study Group on Database
Management Systems," Information Systems, Vol. 3, pp. 173-191, 1978.

The Second Draft Report of the Ad Hoc Committee on the Content and
Methodology of the IGES Version 3 (The Second PDES Report), K. Brauner
and D. Briggs, November 1984.

EXPRESS - A Language for Information Modeling, ISO, TC184/SC4/WG1,
January 1986.

2-5

OMMmON

CI UM560240031U
July 1989

The STEP File Structure, ISO, TC184/SC4/WG1, January 1987.

Mapping from EXPRESS to Physical File Structure, ISO, TCl84/SC4/WGl,
January 1987.

2.2 Terms and Acronyms

A glossary of terms frequently used in GMAP which may be included in
this Model Access Software User's Manual is provided below. Some reference
notes applicable to these definitions are presented after the glossary. A
list of acronyms and abbreviations used in GMAP is also included in this
section.

2.2.1 Terms Used in GMAP

Accept/Reject/Incomplete Notice -- A display on the cell computer that
indicates the final status of the engine disk.

Accept = Acceptable within tolerance specified by engine
manufacturer

Reject = Rejected because of flaw(s) outside the range of
acceptable tolerances

Incomplete = Part cannot be inspected

Access Software -- A set of routines for creating, managing and querying
an incore Working Form model.

Angular -- An angular size tolerance is used to tolerance the size of an

angular feature independent of its angular location along an arc.

Application -- A method of producing a specific result.

Application Request -- A request initiated by an application program,
either through batch or interactive processing, which will interrogate the
model through the PDDI Access Software to obtain or operate on specific
information regarding the model and its components or elements.

Application Requested Data -- The data which fulfills the application's
original request and which is in the proper format and readable by the
application.

Architecture -- A design or orderly arrangement.

ASCII -- American Standard Code for Information Interchange.

2-6

coAUw

CI UM560240031U
July 1989

As-Is -- The present condition.

Attribute -- A quality of characteristics element of any entity having a
name and a value.

B-Spline -- A spline defined by a control polygon, B-spline basis
functions, and an associated knot vector. A Bezier curve is a special case
of a B-spline; a nurb is the most general case of a B-spline.

Bezier Curve -- A type of curve defined by a set of vertices called a
control polygon and a set of basis functions. The basis functions are known
as Bernstein polynomials. K vertices define a curve of order K-1.

Binding -- Establishing specific physical references to data structures

for an application program; may be performed at compile time or at run time.

Blend -- A smooth, continuous transition from one surface to another.

Boundary Representation -- A topology imposed on 3-D geometric entities to
yield a general solid model. That model describes an object by describing
its boundary area.

Body of Revolution (BOR) Representation - A topology in which an object
is represented as the volume swept by a curve rotated about a line. This is
a boundary representation in which the curve represents the surface area of
the object.

Bounded Geometry -- Geometry that has limits defined by its mathematical
domain or range.

Calibration Block Parameters (Scale Factors) -- Nondestructive test
parameters used to adjust a specific cell. These parameters are obtained
from the calibration blocks located at each cell.

Circumferential -- A circumferential tolerance specifies the tolerance
zone within which the average diameter of a circular feature must lie. The
average diameter is the actual circumference divided by pi (3.14159). A
circumferential tolerance is a specific example of a peripheral or perimeter
tolerance for a general curve.

Class - A collection of entities that are alike in some manner.

CLIST -- IBM Command lists.

Composite Curve - A group of curve segments that are CO continuous.

2-7

CI UM560240031U
July 1989

Compound Feature Representation -- An enumerative feature representation
in which at least one component is itself a feature. For example, a bolt
hole circle might be represented as a list of individual hole features.

Concentricity (Generic) - A concentricity tolerance specifies a
cylindrical tolerance zone within which the axis of a feature must lie,
where the axis of the zone coincides with the axis of the datum.

Conceptual Schema -- Formally specified global view that is processing
independent, covering information requirements and formulation of
independent information structures. A neutral view of data, usually
represented in terms of entities and relations.

Conic -- A quadratic curve represented in the most general case by the
equation:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

A conic may be a circle, line, ellipse, parabola, or a hyperbola
depending on the coefficients, A, B, C, D, E, and F.

Constraints (Generic) -- An assertion to explicitly specify data meaning
or semantics.1 (Notes appear at the end of this section.)

Context-Free Grainar -- The syntax of the language gives a precise
specification of the data without interpretation of it.

Constituent -- A specific instance of an entity that is used in the
definition of some other entity.

Data Dictionary -- A catalog of all data elements in a design, giving
their name, definition, format, source, and usage. May also include data
types and value limits.

Defining Airfoil Sections -- A planar or conical section that depicts an
airfoil profile. Defining airfoil sections are those that meet aerodynamic
requirements. Other intermediate sections are added for Manufacturing
purposes.

Dimension -- A part dimension is a quantifiable value expressing size,
form, or location.

Domain -- The set of values permissible in a given context.

Dynamic Allocation -- The allocation (and de-allocation) of memory
resources as required by the application. The opposite is static allocation
where a fixed size segment of memory is available to the application.

2-8

•. C UM560240031U
July 1989

Eddy Current Cell - Hardware used to perform an Eddy current inspection
operation (surface flaws).

Eddy Current Inspection -- An inspection method used to detect internal
potential flaws on a disk. It is based on the principle of sending
electromagnetic signals to a target area on a part and
detecting/interpreting reflection (Eddy current) from the target.

Eddy Current Scan Plan -- An interpreter code program controlling the Eddy
current inspection of a particular geometry.

Eddy Current/Ultrasonic Flaw Data Printout -- A printout containing size
and location information about specific flaw(s) (both critical and
noncritical) associated with a particular part.

Entity -- A description of a person, place, or thing, about which
information is kept.

External Reference -- A reference to some quantity of data that exists
somewhere outside the scope of the immediate body of information.

Feature -- A part feature in the dimensioning and tolerancing context is a
feature in the sense of ANSI Y14.5M, that is, a physical component portion
of a part, such as a surface, hole, slot, and so on, that is used in a
tolerancing situation. In the dimensioning and tolerancing context, a
feature consists of individual or groups of basic shape elements used to
define the physical shape of an item. This general dimensioning and
tolerancing use of features is to be distinguished from Features. The word
"features" alone implies dimensioning and tolerancing features. The term
"form feature" is described below.

Feature Pattern -- A geometric pattern of occurrences of similar form
features, for example, a circular pattern of scallops, a rectangular array
of holes.

Feature Representation (Generic) - A description of a form feature within
the context of a geometric model.

Feature Type -- A name applied to a form feature that is suggestive of its
shape and size, for example, hole, slot, web.

Feature of Size (Generic) -- A feature of size provides a geometric
location capable of being referenced for use with datums and tolerances. A
feature of size can be a GMAP feature, or other referenceable shape elements
of a part model that are symmetric about a point, line, plane, axis, curve,
and so on. When a feature of size is used in a relationship with a
tolerance or datum, its feature of symmetry is the implied reference.

2-9

|s

CI UM560240031U
July 1989

Flat Pattern Representation (Extrusion Representation) -- A topology in
which an object is represented as the volume swept by a planar polygon
moving in a direction normal to its plane. The polygon may have internal
polygon represent the surface area of the object.

Flaw Characteristics -- Location, length, width, depth, and nondestructive
test parameters associated with a specific flaw.

Flaw Data Packet -- Packet containing nonevaluated flaw data. Note that
the packet can contain zero flaws.

Flaw Orientation -- The direction of the major characteristic of the flaw
with respect of the part coordinate system. (See the notes section at the
end of this glossary.)

Flaw Suspect Location -- The coordinate location of a possible flaw
detected during a survey mode inspection (six-axis position of ultrasonic
cell, seven-axis position of Eddy current cell).

Form Feature -- A portion of a part's geometry that is useful to regard as
an entity. In a boundary representation context, this is a subset of the
part's surface area.

Form Tolerance -- Form tolerances are used to control the form of model
features. A form tolerance specifies the amount that an actual features
form may vary from nominal. Form tolerance include straightness tolerance,
flatness tolerance, roundness/circularity tolerance, cylindricity tolerance,
perpendicularity tolerance, parallelism tolerance, angularity tolerance,
profile-of-a-line tolerance, profile-of-a-surface tolerance, circular-runout
tolerance, true-direction tolerance, and mismatch tolerance.

Functionality -- (1) To show that the configuration item has fulfilled the
specified requirements. (2) The receiving and sending systems can operate
on the entity in the same manner with the same results within a pre-defined
tolerance.

Function Modeling -- A description of a system in terms of a hierarchy of
functions or activities, each level decomposing higher ones into greater
detail. Functions are named by verbs; nouns related are declared as inputs,
controls, outputs, and mechanisms.

Geometric Element (Generic) -- An instance of a geometric entity.

Geometric Group -- A group of geometric entities with a name.

geometric Model -- A part description in terms of its underlying geometric
elements. The model may be a wireframe, surface, or solid model.

2-10

00"Noti

C1 UM560240031U
July 1989

Geometric Pattern -- A circular or rectangular pattern of geometric
entities.

Group Technology Code -- An alphanumeric string identifying significant
characteristics of a product, enabling group technology applications. Also
known as Part Classification Code.

Include File -- PASCAL source code from another file or library included
on the compilation of a PASCAL source file.

Input Data - That information which the application needs to supply in
order to interrogate or operate on the model. This data may assume only
these forms prescribed by the PDDI Access Software specification.

Inspection Cycle -- A period for which nondestructive testing inspection
requirements are defined.

Inspection Cycle Zone -- An entity that is composed of a unique
combination of zone and inspection cycle.

Inspection Nodule Operator -- Refers to personnel operating RFC cell(s).

Instrument Setting Adjustments -- Nondestructive testing parameter
adjustments automatically accomplished via pre- and post-calibration
operations. These adjustments have to be accomplished within a
predetermined tolerance.

Internal Flaw -- A subsurface anomaly.

Internal Flaw Major Characteristic -- A vector determined by an agreed
upon method.

Example (1): The vector of greatest magnitude from the centroid to a
boundary of the anomaly.

Example (2): A vector representing the major axis of the minimum
ellipsoidal envelope encompassing the anomaly.

Internal Flaw Tolerance -- A unique combination of:

(a) Internal flaw orientation range.
(b) Serviceable internal flaw tolerance limits.
(c) Repairable internal flaw tolerance limits.

2-11

k; oC -tn

C1 UM560240031U
July 1989

Internal Flaw Tolerance Limit -- A unique combination of:

7(a) Maximum diameter.
(b) Maximum depth below surface.
(c) Maximum thickness.

Interpreted Request -- Input data which has been appropriately modified
to conform to the PDDI Access Software's internal data representation so
that it may be further processed.

Key Attribute -- An attribute or combination of attributes having values
that uniquely identify each entity instance.

2

Laminates Representation (Generic) -- A topology in which an object is
represented as layers of flat material of known thickness.

Location Tolerance -- Location tolerances specify the allowable variation
in position of model features. Location tolerances include various forms of
position tolerancing conventions. These are (true) position, concentricity,
alignment, rectilinear location, and angular location.

Logistics Support -- The function of procuring, distributing, maintaining,
replacing, and repairing material in support of a delivered product.

Machine Coordinate Positions -- The probe location with respect to machine
coordinates.

Machine Preset Data -- Machine coordinate adjustments automatically
accomplished via pre- and post-calibration operations. These adjustments
have to be accomplished within predetermined tolerance.

Metadata -- Data about data. Defines the physical schema and record
formats of the part data.

Metamodel -- A body of data that defines the characteristics of a data
model or structure.

Model -- A collection of PDD that is transferable, displayable,
accessible, and equivalent to a Part. The internal representation of the
application data, as initiated and organized by the user. The model is also
referred to as the Working Form.

Model Network Definition -- The set of rules and definitions which outline
in detail the data structure whereby higher order entities may be composed
of lower order entities, or constituents, and the lowe4 order entities may
be constituents of one or more higher order entities.

2-12

COHISOWW

CI UM560240031U
July 1989

Native System -- The PDD and applications in a format that is unique to
the database of a CAD system.

Nondestructive Testing Parameters -- Parameters used by the Eddy current
and ultrasonic instruments (examples: amplitude, phase angle, gain,
threshold, and so on).

Nonconstructive Feature Representation (Explicit Feature Representation)
-- A feature representation that at least partially depends on a declaration
that a face, or portion of a face, it "in" the feature.

Nondestructive Testing Personnel -- Personnel responsible for the
generation of scan plans and derivation of applicable nondestructive testing
instrument settings used in the scan plans.

Nonshape Data -- Produce definition data that cannot be represented by
shape elements.

Normal Forms -- Conditions reflecting the degree of refinement and control
over the relationships and entities in an information model.

Numerical Control Program (Complete and Proposed) -- Set of program
instructions used to generate a probe path.

Orientation Range -- An envelope in which the major flaw characteristic
must lie.

Parse -- The process of analyzing input strings (records) to identify
fields and to verify that the data has a valid format.

Part Blueprint - A blueprint provided by the engine manufacturer of a
particular F100 engine disk.

Physical Schema -- Internal representation of data; the computer view that
includes stored record format and physical ordering of stored records.

PID File -- A PID File is a copy of the Working Form filed to disk for
temporary storage. The software that produces this capability (PID Code) is
provideA as an interim solution while a translator to the native database is
in development.

Polynomial Spline -- A parametric spline of order 1, 2, or 3 defined by a
set of N+1 points. The spline is CX, CY, or CZ continuous and defined by
coefficients such that:

2-13

cGuotm

CI UM560240031U
July 1989

x(i) = AX(j) + BX(i) * S + CX(i) * S**2 + DX(j) * S**3

y(i) = AY(j) + BY(i) * S + CY(j) * S**2 + DY(i) * S**3

z(i) = AZ(i) + BZ(i) * S + CZ(i) * S**2 + DZ(i) * S**3

and a parameter space (TO, TI, ... T)

where

T(i) = u =T(i+l)

S = u - T(i)

Position Tolerance -- A position tolerance (true position) specifies a
tolerance zone within which the feature may vary in any direction.

Post-processor -- A phase of the translator where data is received from
the Exchange Format and is converted to the Working Form.

Pre-processor -- A phase of the translator where data is taken from the
Working Form and is converted to the Exchange Format.

Primitive Constructive Feature Representation (Generic) -- A constructive
representation that is noncompound and that does not incorporate another
feature. Such a representation must consist solely of overt construction
information. Representation of a through hole by centerline and diameter is
an example.

Probe Blueprint -- Blueprint of Eddy current probe supplied by the probe
manufacturer.

Product Definition Data -- Those data "explicitly representing all
required concepts, attributes, and relationships" normally communicated from
Design throughout Manufacturing and Logistics Support. The data include
both shape and nonshape information required to fully represent a component
or assembly so that it can be analyzed, manufactured, inspected, and
supported. They enable downstream applications, but do not include process
instructions. These data are not always finalized at the design release;
the manufacturing process can also add to the product model or generate
derived manufacturing product models.

Product Life Cycle -- Includes design, analysis, manufacturing,
inspection, and product and logistics support of a product.

2-14

cOwumo

CI UM560240031U
July 1989

Product Model -- A computer representation of a product.

Product Support -- The function that interprets customer requests for
information and can provide the technical responses to the customer in the
form of technical orders and instructions.

Proprietary Part Flaw Data -- Formatted dataset containing proprietary
data defining size(s), maximums, and location(s) of critical flaw(s)
(dimensional and locational tolerance).

RAW.O File -- A data file that uses a bi-cubic patch surface

representation to define the surfaces of an airfoil.

Ready Status -- Go/No-Go decision.

Relation -- A logical association between entities.
3

Remount Decision -- Decision to remount an engine disk.

Replicate Feature Representation (Generic) -- A description of a feature
as being identical to another feature except for location. Mathematically,
a replicate feature representation consists of tht identification of another
(necessarily constructive) feature plus a transformation.

Robot Initialization Parameters -- A set of nondestructive testing
parameters used to initialize the robot on an Eddy current or ultrasonic
cell.

Rotational Sweep -- A sweep in which the swept curve is rotated about a
line (the "centerline" of the sweep).

Ruled Surface (Generic) -- A surface defined by a linear blend of two
curves.

Run System -- The Translator subpackage which provides the communication
interface between the user and the pre/Post-processors.

Run-Time Subschema -- A subset of the data dictionary information used at
run-time by the access software to provide field data and check data.

Scan Plan -- Instructions that drive an inspection; these include
inspection area geometry, ordered inspection path points, inspection probe
selection, inspection path for each probe, mechanical commands that allow
mechanical manipulator positioning, instrument setting, and all the
variables needed for signal processing and flaw data acquisition during
inspection.

2-15

CI UM560240031U
July 1989

Scan Plan Specifications -- Standards and procedures used in creating Eddy
current and ultrasonic scan plans for the RFC system.

Schema -- Formal definition of information structure. See Conceptual
Schema, Physical Schema, Run-time Schema.

Shape - The physical geometry of a mechanical part, as distinguished from
a computer description of that geometry. Where the difference is
significant, the attitude is taken that shape is nominal or basic, with
shape variations of tolerances grafted thereon.

Shape Data -- Include the geometric, topological description of a product
along with the associated dimensional tolerances and feature descriptions.

Single Spatial Probe/Transducer Path -- The starting and ending location
of a single probe movement.

Size Tolerance -- Size tolerances specify the allowable variation in
size-of-model features, independent of location. Size tolerances include
circumferential, rectilinear size, and angular size.

Solid Geometric Model (Shape Representation) -- A computer description of
shape. The description may be partial in the sense that not all aspects of
part shape are indicated. For example, a body of revolution representation
of a turned part may not describe the nonaxisymmetric4 aspects of part
geometry. A solid model must be complete and unambiguous in the sense that
it describes a single volume in 3-D space.

Solid Modeling -- The creation of an unambiguous and complete
representation of the size and shape of an object.

Source Code -- A computer program written in some language which is
processed to produce machine code.

Spline -- A piecewise polynomial of order K, having continuity up to order
K-1 at the segment joints.

Squirter Blueprint -- Blueprint of the squirter head that houses the
ultrasonic transducer.

Subface -- A subface is a bounded portion of a face. It is defined by an
underlying face, exactly one periphery closed curve and zero, one, or more
internal closed curves that represent cutouts or holes in the region. The
internal closed curve must not touch or intersect each other or the
periphery closed curve and must be entirely contained within the periphery
closed curve.

2-16

o01ronm

CI UM560240031U
July 1989

Surface Flaw -- A surface anomaly.

Surface Flaw Major Characteristic -- A vector determined by an agreed upon
method.

Example: A vector representing the major axis of the minimum elliptical
envelope encompassing the anomaly in the plane of the surface.

Surface Flaw Tolerance -- A unique combination of:

(a) Surface flaw orientation range.
(b) Serviceable surface flaw tolerance limits.
(c) Repairable surface flaw tolerance limits.

Surface Flaw Tolerance Limit -- A unique combination of:

(a) Maximum length.
(b) Maximum width.
(c) Maximum depth.

Sweep Surface - Surfaces formed by extruding or revolving a planar
profile in space.

Syntax -- Grammar: A set of rules for forming meaningful phrases and
sentences from words in a vocabulary.

System Computer -- VAX 11/780 and supporting peripheral hardware.

System Constraints -- Those hardware and software environmental
constraints which will be imposed upon the PDDI Access Software that will
limit its implementation and application. An example of such constraints
might be the particular compiler used to compile the PDDI Access Software
package.

To-Be -- The future condition possible, given a proposed capability.

Tolerance (Generic) -- The total amount by which something may vary. For
mechanical product definition, tolerances can be shape tolerances, weight
tolerances, finish tolerances and so on. In the context of GMAP, the term
"tolerance" used alone implies shape tolerance. Other forms of tolerance
(nonshape) are explicitly stated, for example, "finish tolerance." In a
GMAP product model, tolerances occur without dimensions. As in the Product
Definition Data Interface Program, model dimensions are implicit in the
model geometry. Therefore, application of a tolerance implies a specific
underlying dimension or geometric condition.

Topology -- A data structure that assembles geometric entities (points,
curves, surfaces) into a solid geometric model.

2-17

CI UM560240031U
July 1989

Transducer Blueprint -- Blueprint of ultrasonic transducer supplied by the
transducer manufacturer.

Transfer Data -- The data required to make an exchange of data between

systems (i.e., delimiters, record counts, record length, entity counts,

numeric precision).

Translator - A software MECHANISM that is used for passing data between
the Exchange Format and Working Form of the PDD.

Ultrasonic Cell -- Hardware used to perform ultrasonic inspection
operation (internal flaws).

Ultrasonic Inspection -- An inspection method used to detect surface flaws
on a disk. It uses ultrasonic waves through a stream of water to send and
collect signals concerning an area targeted for inspection.

Ultrasonic Scan Plan -- Interpreter code program controlling the
ultrasonic inspection of a particular geometry.

Unbounded Geometry -- Geometry represented parametrically, without limits,

usually by coefficients to a defining equation.

Unigraphics (UG) -- A computer graphics system.

User Function (UFUNC) -- Al interface to the UG database.

Working Form -- Product definition data information in machine-dependent
data formats; an a memory resident network model.

Zone -- A physical area of the disk composed of zone components.

Zone Component -- A subface, face, or feature that constitutes a zone or
element of a zone.

NOTES:
1 T.J. Teorey and J.P. Fry, Design of Database Structures, 1st

edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., p. 463.

2 Integrated Computer Aided Manufacturing (ICAN) Architecture, Vol.
5, Information Modeling Manual (IDEFl), USAF Report NO. AFWAL-TR-81-4023,
June 1981, p. 212.

3 Ibid., p. 214.

4 Ibid., p. 211.

2-18

C1 UMS60240031U
July 1989

2.2.2 Acronyms Used In GMAP

ADB --- Application Data Block (also referred to as Attribute Data

Block).

AIMS -- Automated IDEF Methodology System.

ANSI -- American National Standards Institute.

ANT -- Abstract of New Technology.

APT - Automatically Programmed Tools.

ATP -- Automation Technology Products.

BOM -- Bill of Materials.

BOR -- Body of Revolution.

BPI -- Bits per Inch.

BREP -- Boundary Representation.

CAD -- Computer Aided Design.

CAE -- Computer Aided Engineering.

CAEDS -- Computer Aided Engineering Design System.

CALS - Computer Aided Acquisition and Logistics Support.

CAM -- Computer Aided Manufacturing.

CAM-I -- Computer Aided Manufacturing--International.

CAPP -- Computer Aided Process Planning.

CAS - Cooled Airfoil System.

CDM -- Common Data Model.

CDR - Critical Design Review.

CDT -- Component Design Technology.

CFSR -- Contract Fund Status Report.

CI - Configuration Item.

CIM -- Computer Integrated Manufacturing.

CLIST -- IBM command list.

CM -- Configuration Management.

C9 -- Coordinate Measuring Machine.

C/SSR -- Cost/Schedule Status Report.

CWBS -- Contract Work Breakdown Structure.

DBMS -- Data Base Management System.

2-19

C.nOWIjmI

CI UM560240031U
July 1989

DCL -- DEC Command Language.

DDL -- Data Definition Language.

DEA - Digital Equipment Automation.

DEC -- Digital Equipment Corporation.

DESO -- (ICAM) Architecture of Design.

DJR -- Design Job Request; Drafting Job Request.

DoD -- Department of Defense.

DS -- Design Specification.

DSM - Design Substantiation Memo,

EBCDIC - Extended Binary Coded Decimal Interchange Code (IBM character

set).

EC -- Eddy Current.

ECO -- Engineering Change Order.

EDM -- Electrical Discharge Machining.

EF -- Exchange Format.

Eli -- Engineering Information Index.

EMD -- Engineering Master Drawing.

EPCS -- Engine Product Configuration Support.

ESA -- Engineering Source Approval.

ESP -- Experimental Solids Proposal.

FEDD -- For Early Domestic Dissemination.

FEM -- Finite-Element Modeling.

FOF -- Factory of the Future.

FOS -- Feature of Size.

FPIM -- Fluorescent Penetrant Inspection Module.

FSCM -- Federal Supply Code for Manufacturers.

GE -- General Electric.

GMAP -- Geometric Modeling Applications Interface Program.

GSE -- Ground Support Equipment.

HCF -- High-Cycle Fatigue.

IBIS -- Integrated Blade Inspection System.

IBM -- International Business Machines.

2-20

coOwmoddw

CI UM560240031U
July 1989

ICAM -- Integrated Computer Aided Manufacturing.

ICOM -- Input/Control/Output/Mechanism.

ICS - Information Computer System.

IDEF -- ICAN Definition.

IDEFO -- IDEF Function Modeling.

IDEFI -- IDEF Information Modeling.

IDEFIX -- IDEF Extended Information Modeling.

IDEF2 -- IDEF Dynamics Modeling.

IDSS -- Integrated Decision Support System.

IEEE -- Institute of Electrical and Electronics Engineers.

IEN -- Internal Engineering Notice.

IFS -- Interface Specification.

IGES -- Initial Graphics Exchange Specification.

IISS -- Integrated Information Support System.

ILC -- Improved Life Core.

IMS -- Information Management System.

IPGS -- (IBIS) Inspection Plan Generation System.

IRB -- Industry Review Board.

IRIM -- Infrared Inspection Module.

ISO -- International Standards Organization.

ITA -- Intelligent Task Automation.

ITI -- International TechneGroup Incorporated.

ITR -- Interim Technical Report.

LCF -- Low-Cycle Fatigue.

MAS -- Model Access Software.

MCAIR -- McDonnell Douglas Corporation/McDonnell Aircraft Company.

MFGO -- (ICAM) Architecture of Manufacturing.

MRP -- Materials Requirements Planning.

NAD -- Needs Analysis Document.

NBS -- National Bureau of Standards.

N/C -- Numerical Control.

NDE -- Nondestructive Evaluation.

2-21

CI UM560240031U
July 1989

NDML -- Neutral Data Manipulation Language.

NDT -- Nondestructive Test.

NTSB -- National Transportation Safety Board.

NVI -- Name/Value Interface.

OGP -- Optical Gaging Products, Inc.

PA/QA -- Product Assurance/Quality Assurance.

PD -- Product Data.

PDD -- Product Definition Data.

PDDI -- Product Definition Data Interface Program.

PDES -- Product Data Exchange Specification.

PDL -- Program Design Language.

PED -- Preliminary Engine Design.

PI -- Principal Investigator.

PID -- PDDI Interim Database.

PIES -- Product Information Exchange System.

PMP/PMS -- Program Management Plan/Project Master Schedule.

PROCAP -- Process Capability.

PS -- Product Specification.

RFC -- Retirement for Cause.

RPM -- Revolutions per Minute.

SA-ALC -- San Antonio-Air Logistics Center.

SAD -- State-of-the-Art Document.

SD -- Scoping Document.

SDL -- Source Data List.

SDS -- System Design Specification.

SL -- Salvage Layout.

SML -- Source Material Log.

SOA -- State-of-the-Art (Survey).

SOR -- Surface of Revolution.

SPC -- Statistical Process Control.

SPF -- System Panel Facility.

SQA -- Software Quality Assurance.

2-22

C1 UM560240031U
July 1989

SQAP -- Software Quality Assurance Plan.

SRD -- System Requirements Document.

SRL -- Systems Research Laboratories.

SS - System Specification.

STEP -- Standard for the Exchange of Product Model Data.

STP -- System Test Plan.

TCTO -- Time Compliance Technical Order.

TD -- Technical Data.

TDCR -- Turbine Design Cost Reduction.

TDR -- Tool Design Request.

TechMod -- Technology Modernization.

TO -- Technical Order.

TOP -- Technical and Office Protocol.

TSO -- Time-Sharing Option (IBM term).

UFUNC -- User Function.

UG -- Unigraphics.

UGFM -- Unigraphics File Manager.

USA -- Unified System for Airfoils.

USAF -- United States Air Force.

UTC -- United Technologies Corporation.

UTP -- Unit Test Plan.

UTR -- Unit Test Report.

UTRC -- United Technologies Research Center.

VAX -- Virtual Architecture Extended.

VMS -- Virtual Memory System.

WBS -- Work Breakdown Structure.

WF -- Working Form.

WPAFB -- Wright-Patterson Air Force Base.

XIM -- X-Ray Inspection Module.

2-23

CI UM560240031U
July 1989

SECTION 3

SYSTEM OVERVIEW

3.1 System Architecture

The purpose of the GMAP/Product Definition Data Interface (PDDI)
Software System is to provide a prototype for the comunication of complete
Product Definition Data (PDD) between dissimilar CAD/CAN Systems. This
system will serve as the information interface between engineering and
manufacturing functions. As shown in Figure 3-1, it is composed of the
Conceptual Schema, Schema Manager, Exchange Format (EF), the System
Translator, and Model Access Software (HAS) with Name Value Interface (NVI).

The Conceptual Schema is a data dictionary that defines the data needed
to define a CAD/CAM model. The Schema Manager is a software tool that will
be used to manage all aspects of the creation and interrogation of the
Conceptual Schema, and will be used to generate a physical schema. The EF
is a neutral physical sequential format for passing data between dissimilar
systems. The System Translator is the software mechanism for passing this
data between the EF and the Working Form (WF) of the PDD. The HAS is a set
of callable utility programs that will allow applications to manipulate and
query PDD WF models. The NVI frees applications programmers from the need
to be concerned with the physical location of attribute values for entities
within the WF.

3.1.1 System Interfaces

The GMAP/PDDI software must interface with the computer system on which
it is installed, the local (native) CAD/CAN database, the EF, the WF, and
the user (application). It does this via HAS, the System Translator and
local (native) developed software packages.

3.1.2 System Environment

The GMAP/PDDI system was developed in the following computing
environment:

Computer/Oferating System

IBM 43XX/MVS with TSO and associated tape drives, disk drives and
terminals.

DEC VAX 11/780 VMS with associated tape drives, disk drives and
terminals.

3-1

CI UM560240031U
July 1989

GMtorts Cre euieet

plus E th sieoSh oe.(h DIchined *Rbodleurea .5M

IBMPACAV Relas 2.2e
DE-PSCL 3., ORRAx7 V.

Expre3s2

CI UM560240031U
July 1989

Tern~inals

E&S PS300 (or equivalent for graphics applicat.ions)
IBM 3270 (or equivalent)

The PDDI/GMAP software system is transportable to other computing
systems. However, appropriate local (native) interfaces (translator) must
be provided. The Operator's Manual (OM 56024001U) provides information on
migration to other systems.

3.2 Schema Manager

The Schema Manager enables the data administrator to create and maintain
entity definitions in a Conceptual Schema model, analyze the defined
entities, and generate physical schema from the Conceptual Schema.

3.2.1 Physical Schemas

The WF physical schema is determined thro gh a data dictionary or PASCAL
include files. The EF physical schema is defined by the Conceptual Schema
and the specification for the neutral file format.

3.3 EE

The EF is a neutral data format. This physical, sequential format is
used to for passing data between dissimilar CAD/CAN systems.

3.4 System Translator

The System Translator is the software package used to format PDD for
transmission between different CAD/CAN systems. The Translator has a
"Preprocessor" which collects data from the sending system and formulates it
into an EF file; and a "Postprocessor" which collects the EF file and
formulates it into the receiving system internal WF.

3.5 Model Access Software

The HAS is a set of PASCAL procedures that maintains the physical
structure of related user data in computer memory. This user data is
referred to as the WF model. The HAS provides an interface to the WF model
for application programs to create, relate, and access elements of user data.

The application programs are independent of the physical structure of
the stored data elements. This independence ensures that as different
structure techniques are implemented, the application programs need not
change.

3-3

C1 UM560240031U
July 1989

3.5.1 Data Items

The HAS manages two types of data: entities and lists. An entity is an
element of data supplied by the application to be stored in the WF. A list
is a collection of entity keys. A list is a collection of entity keys
created by the application in the WF.

3.5.1.1 Entit

An entity is the principle data item managed by the HAS, and is:

o Defined by the conceptual schema in the application creating the
entity

o Accessed by a unique key return from the create entity function

o A node in the WF structure containing an Attribute Data Block
(ADB), and references to other entities in Constituent
Relationships and/or User Relationships

ATTRIBUTE DATA BLOCK

An ADB is a collection of data embedded in a single contiguous block
of memory. Individual pieces of data within an ADB are called
attributes. HAS manages only the first three items in the structure
of an ADB. These three attributes, KIND, LENGTH, and SYSUSE, are
required in every entity. Each attribute is described below:

KIND - Must be the first item defined in the ADS. The KIND defines
the entity type code. This code cannot be charged.

LENGTH - Must be the second item defined in the ADB. The LENGTH
defines the number of bytes in the ADB including KIND, LENGTH, and
SYSUSE.

SYSUSE - One full word of system use data reserved for internal
purposes. These data are never used by the application, and should
never be inspected or modified.

NOTE: All other attribute data in the ADB is managed by the
application program.

The HAS allows the structuring of the user data. The entities can be
related in user/constituent order. An entity may be related to multiple
user entities, creating a network structure in the WF. An entity may also
contain multiple constituent entities.

3-4

CI UM560240031U
July 1989

CONSTITUENT RELATIONSHIP

A constituent entity is used in the definition of the user entity.
Inclusive constituents of an entity encompass all descendants, their
descendants, and so forth until there are no more descendants. For
example in Figure 3-2, Point 0 (P0) and Point 1 (P1) are constituents
of Line 1.

LINE = ENTITY(5008);
IDENT : KEY TIDENT;
DISPLA : T_DISPLAY;
PO : POINT;
P1 : POINT;
ENDENTITY;

Figure 3-2. LINE: An Entity With Constituents

3-5

oowmLine

Displa PO m ~ mu w =

CI UM560240031U
July 1989

USER RELATIONSHIPS

A user entity uses constituent entities in its definition. Inclusive
users of an entity include all ancestors, their ancestors, and so
forth until there are no more ancestors. For example in Figure 3-2,
Line 1 is a user of Point 0 (P0) and Point 1 (PI).

3.5.1.2 List

A list is a collection of entity keys which is:

o Created by the application program

o Accessed by a unique list key returned from the Creace List
Functions

o Used by the Application to store selected entity keys for
subsequent processing.

3.S.2 Interface Parameters

The HAS is a set of PASCAL routines which provides an interface to the
WF model. These routines contain input and output arguments referred to
here as "interface parameters." Each interface parameter has a name and a
type. This information is shown as follows:

DATA-NAME :DATA-TYPE.

3.5.2.1 Data-Name Parameters

The following conventions are used to name parameters:

o Keys are named KEY1, KEY2,...KEYN.

o The ADB is named ENTDEF.

o Text parameters are named according to their purpose.

o Integer parameters are named according to their purpose.

o A return code Is produced by every interface routine/operation.
This parameter is a full word integer and is always named IRC.
(See Appendix C for a return code list.)

3-6

cownmwm

CI UM560240031U
July 1989

3.5.2.2 Data-Type Parameters

Data-Type parameters may be one of the following:

ANYKEY - Access key of an entity or list.

ENTBLOCK - Entity data block definition.
- In PASCAL, probably declared as a record.
- In FORTRAN, declared as a common or dimension array.

CHARACTER - A single character as defined by the system.

INTEGER - A full word integer.

3.5.2.3 Formal Data Types

The following is a reference list of data-types for interface calls in
this MAS document.

ANYKEY - INTEGER
LISTKEY - ANYKEY
EKTKEY - ANYKEY
ORD_KIND INTEGER
EXTRETCODE a INTEGER
LISTPSTN - INTEGER
LISTINDX - INTEGER
LISTSIZE INTEGER
ROUTINE - ARRAY(l...8) OF CHARACTER
NAMTYP z ARRAY(...6) OF CHARACTER

(ADB) ENTBLOCK = RECORD OF
KIND = ORDKIND
SIZE = INTEGER
SYSUSE = INTEGER
DATA = (USER DEFINED)

The formal declarations for the MAS interface routines are maintained in
the member APL TYP of the library "CAD5.CMAP.V33.MASINC"

3.5.3 Memory Manager

A Model Access Memory Manager was developed to replace the PASCAL
run-time memory manager. It reduces the number of bytes of overhead
required for free-space collection, and isolates the WF model from all other
PASCAL dynamic allocations.

3-7

Lmn

CI UM560240031U
July 1989

This memory manager is currently in the MAS package and requires no user

intervention for utilization.

3.6 MY

The NVI frees applications programmers from concern for the physical
location of attributes for entities in the WF of the MAS. The NVI provides
the ability to alter the physical data atructre without impacting program
source code and removes the need to program and maintain attribute data
structures and access algorithms by applicarimns programers. Section 5
provides detailed information on tkis feature.

3-8

oo~wntm

CI UM560240031U
July 1989

SECTION 4

MODEL ACCESS SOFTWARE (MAS) OPERATIONS AND ENVIRONMENT

4.1 Introduction

The Entity Operations and List Operations sections provide the
applications programmer with the interface operations needed to access the
data structures passed back to the application program.

Figure 4-1 illustrates the interrelationships of the HAS interface
operations shown in these sections.

ADB List (of Keys)
IRC KEY

PDDI Access Software Interface Operations

Activate Upde Genera
Crete., tList Delete..

List Lolst

7 - I
_ILower Level Operatons !

I Working User

Figure 4-1. HAS Interface Operations

4-1

Is

CI UM560240031U
July 1989

4.2 Initialization/Deletion of the MAS Working Form (WF)

Two routines provide the interface used to initialize the HAS.

The basic initialization operation (MAINIT) creates a working model and
enables HAS.

The HAKILL function is used to destroy the working model and disable MAS.

An application does not have to install a data dictionary. It can
create and use entities on an ad o basis. If a data dictionary is not

installed, the following limitations are imposed:

1. Any entity type will be permitted.

2. The interface routines will not validate any operation other than
outright errors; i.e., defining an ADB with a negative length. The
application is - "on its own".

3. There will be no provision for organization of entities by class.

Included vith the initialization and deletion operations descriptions
that follow are the error and warning messages that may be returned.
Appendix C contains a complete list of these messages along with their
numeric codes.

4-2

i -~

CI UM60240031U
July 1989

FUNCTION: Initialize the working model.

FORMAT: MAINIT (IRC)

INPUT:
NONE

OUTPUT:
IRC : INTEGER

The procedure return code.

DESCRIPTION: The working model will be initialized.

Model Access Software is enabled.

ERRORS: Message Explanation

MAS_INIT_FAILED Could not create schema and its
root.

MAINITALREADYDONE Root already created.
NOT_ENOUGH_ROOM No more core memory.

NOTE: Do not call MAINIT twice in succession. Use a MAKILL to
delete the current environment before initializing another.

4-3

womoam

CI UM560240031U
July 1989

FUNCTION: Delete the current working model.

FORMAT: MAKILL (IRC)

INPUT:
NONE

OUTPUT:
IRC : INTEGER

The procedure return code.

DESCRIPTION: The entire working model is destroyed.

Model Access Software is disabled.

ERRORS: None.

4-4

oms

CI UM60240031U
July 1989

4.3 Entity Operations

The basic entity operations can be categorized by the following
functions:

Create
Query
Update
Delete
Activate
Application Flags

All operations performed on entity constituent lists are done by list
operations, with the exception of creating an entity with constituents.

Included with the entity operations descriptions presented on the pages
that follow are the error and warning messages that may be returned.
Appendix C contains a complete list of these messages along with their
numeric codes.

4.3 1 Create Operations

These operations allow the creation of entities in the MAS WF model.
The application creates the entity attribute data block in its local memory
space. This includes the fields required by MAS (KIND, LENGTH, and SYSUSE)
as well as the attributes defined by the application.

The create routines are shown in Table 4-1, and the following pages.

CREATE ROUTINES

DESCRIPTION ROUTINE

Create an entity. MAECR

Create an entity with a constituent
list of specified size. MAECRN

4-5

CI UM560240031U
July 1989

FUNCTION: Create an entity.

FORMAT: MAECR(ENTDEF,KEY1,KEY2,IRC)

INPUT:
ENTDEF ENTBLOCK

The application data structure which contains
the entity definition.

KEY1 ANYKEY
The entity or list of entities to be made
constituents of the entity being created.

OUTPUT:
KEY2 ENTKEY

The key of the newly created entity.

IRC : INTEGER5
The return code.

DESCRIPTION: The entity is added to the model. Constituent entities are
connected to the entity. If KEY1 is an entity key, then only
that entity will become a constituent. If KEY1 is an
application list key, then all entities in the application
list will become constituents.

KEY1 may be nil if the entity being created is to have no
constituents (a full word integer zero can be used as a nil
key).

NOTE: The application is responsible for the format of the
ADB data after the first three items (KIND, SIZE, SYSUSE).
The KIND is a positive integer. The length is a positive
integer representing the length of the ADB (including the
three items required by MAS) in bytes.

The possible return code values are:

0 a Success:
7 a Failure: Invalid KIND value
10 w Failure: Invalid KEY1
39 = Failure: No more core memory.

No entity is created for the return codes of failure (7, 10, 39).

4-6

CI UM560240031U
July 1989

MAECRN

FUNCTION: Create an entity with a constituent list of a given size.

FORMAT: MAECRN(ENTDEF,KEYC,KEYE,NUM,IRC)

INPUT:
ENTDEF ENTDATA

The application data block that contains the
entity definition.

KEYC ANYKEY
The entity or list of entities to be made
constituents of the entity being created.

NUM INTEGER
The size of the constituent list of the
entity being created.

OUTPUT:
KEYE ENTKEY

The key of the newly created entity.

RC : INTEGER
The return code.

DESCRIPTION: The entity is added to the model. A constituent list of the
given size is created and the constituent entities are added.

A nil key may be used if the entity being created is to have
no constituents at this time. A full word integer zero can be
used as a nil key.

The possible return code values are:

O a Success
7 a Failure: Illegal KIND value or model

corrupted.
9 a Failure: Constituent key is not an entity

or an application list.
38, 39, 40 = Failure: No more core memory.

No entity is created for failures (7, 9, 38, 39, 40).

4-7

k

CI UM560240031U

July 1989

4.3.2 Ouery Operations

These operations are used to retrieve Information for a specified entity
and load it into the application memory area.

The query routines are shown in the Table 4-2, and the following pages.

QUERY ROUTINES

DESCRIPTION ROUTINE

Get the KIND value of a specific entity. MAEGKN

Get the ADB of a specific entity. MAEGTK

Determine the number of users. MAEUSR

4-8

CI UM560240031U
July 1989

FUNCTION: Get the KI19D value of a specific entity.

FORMAT: MAEGKN(KEY1 ,KIND ,IRC)

INPUT:
KEYl ENTKEY

The entity whose kind is to be retrieved.

OUTPUT:
KIND : INTEGER

The KIWD value of the specified entity.

IRC : INTEGER
The return code.

DESCRIPTION: The stored ADB is located. The KIND value in the ADB is
retrieved.

The possible return code values are:

0 = Success
18 = Failure: KEYl is nil or not an entity.

4-9

0OwrVAX#

CI UM560240031U
July 1989

rKAEGTK

FUNCTION: Get the ADB of a specific entity.

FORMAT: MAEGTK(KEY1,ENTDEF,IRC)

INPUT:
KEY1 ENTKEY

The key of the entity whose ADB is to be
copied.

OUTPUT:
ENTDEF : EqTBLOCK

The ADB to receive the stored entity.

IRC : INTEGER
The return code.

DESCRIPTION: The stored ADB is located and copied into the application data
block. If KEY1 is nil, then a nil KIND and a zero length is
returned.

The possible return code values are:

0 = Success
18 = Failure: KEYl is nil or not an entity.

4-10

cowojm

CI UM560240031U
July 1989

MAEUSR

FUNCTION: Determine the number of users for an entity or application

list of entities.

FORMAT: MAEUSR(KEYI,UEXIST,IRC)

INPUT:
KEY1 AM-KEY

The entity or application list of entities
whose users will be counted.

OUTPUT:
UEXIST : INTEGER

The value number of users.

IRC : INTEGER
The return code.

DESCRIPTION: KEYl may be either an entity key or an application list key.
If KEY1 is an entity, the number of users of the entity is
returned. If KEY1 is an application list, the number of
direct users of the entities on the list is returned.

The possible return code values are:

0 = Success
17 = Failure KEYl is not a valid ENTKEY OR

LISTKEY.
18 = Failure KEYl is nil.

4-11

00~WW&

CI UM560240031U
July 1989

4.3.3 Update Operations

Update operations, presented in Table 4-3, and the following pages, are
used to update the ADB for specified entities. In general, the application
should use the MAEGTK function to get the ADB before the update function is
used.

TABLE 4-3

UPDATE OPERATIONS

DESCRIPTION ROUTINE

Update the attribute data block of an entity. MAEUD

4-12

[ormaum

CI UM560240031U

July 1989

MAEUD

FUNCTION: Update the attribute data block of an entity.

FORMAT: MAEUD(KEY1,ENTDEF,IRC)

INPUT:
KEY1 ENTKEY

The key of the entity to be updated.

ENTDEF : ADB
The ADB supplying the update values.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: The ADB of KEY1 will be updated with the given ADB values.
The value of KIND must agree with the working form copy.
Otherwise, an error will result. If the length is greater
than the current length, then a new ADB will be created with
more space.

The possible return code values are:

0 = Success
1 = Failure Kind or given key is undefined.
6 = Failure Cannot update entity.

18 = Failure KEYl is nil.
38, 39, 40 = Failure No more core memory.

4-13

-SooLm

CI UM560240031U
July 1989

4.3.4 Delete Operations

These operations address how you delete entities from the IAS WF model.
The entities in the working model currently are grouped into the following
classifications:

o Dependent

o Support

o Primary

o Secondary.

Delete rules have been established for the entities in these
classifications. For a new entity kind, the default classification is
"Dependent" unless it is otherwise defined.

Delete Rules - The delete rules, shown in Table 4-4, apply to the
constituent relationships with which entities are defined. They
determine whether a constituent entity can be deleted by checking each
of its user entities. For example, the delete rules applied to entity
(A) in relation to a specific user entity (B) may be different than the
delete rules for that same entity (A) in relation to another specific
user entity (C).

The action taken for the IDBMAS delete classifications are determined by
the combinations of yesno (YN) answers to the following conditions, posed as
questions:

1. Can this constituent entity be deleted from a specific user entity?

2. Does the deletion of this (constituent) entity cause deletion of a
specific user?

3. Does deletion of a specific user cause deletion of this entity
(constituent)?

4-14

CI UM560240031U
July 1989

TABLE 4-4

DELETE RULES

CONDITION

(1) (2) (3) DELETE CLASSIFICATION

N N N Dependent

N N Y Support

The Primary

The delete classifications are defined as follows:

Dependent - Constituent entity cannot be deleted because the user
entity is dependent on its existence. The user entity may
be deleted without deleting the constituent entity.

Support - Constituent entity cannot be deleted because the user
entity is dependent on its existence. The user entity may
be deleted; however, the constituent entity will also be
deleted unless another user entity does not permit the
deletion of the constituent entity.

Primary - Constituent entity can be deleted, but only if the user
entity can, and will, also be deleted. The user entity may
be deleted without the constituent entity being deleted.

Secondary - If the number of constituents falls below an established
minimum, the constituent entity can be deleted and, if
possible, the user entity will also be deleted. If the
user entity cannot be deleted, none of the minimum
constituents can be deleted. If the number of constituents
is greater than or equal to the minimum, the constituent
entity can be deleted.

Test routines are provided to return the entities or lists that would be
deleted if actual delete routines were used.

Delete Routines - The IDB/NAS delete routines are presented in Table
4-5, and the following pages. The first two routines actually delete
entities (MAED, MAEDI). The third and fourth routines test the delete
function, allowing the programmer to see the results of a potential delete
without modifying the stored data (MAEDT, MAEDTI).

4-15

CeN1#mW

CI UM560240031U
Juy 1989

When deleting a list of entities that includes users and constituents,
the list should be ordered so that the users are processed before the
constituents. The routines ?ALROR and MALRORI perform this function on an
application list. (An entity constituent list should never be reordered.)

DELETE ROUTINES

DESCRIPTION ROUTINE

Delete an entity or list of entities. MAED

Delete an entity or list of entities and the inclusive MAEDI
constituents.

Delete test an entity or list of entities. MAEDT

Delete test an entity or list of entities and the MAEDTI
inclusive constituents.

4-16

cwnmotm

CI UM50240031U

July 1989

AED

FUNCTION: Delete an entity or list of entities.

FORMAT: MAED(KEYl,KEY2,IRC)

INPUT:
KEYl ANYKEY

The entity or list of entities to be

deleted.

OUTPUT:
KEY2 LISTKEY

The list of entities marked for deletion.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key, and the order
of the entities in the list may be important. KEY2 will list

any entities from the KEYl list that were not deleted. If all

entities are deleted, the mark list will be empty.

The possible return code values are:

0 a Success
17 a Failure KEY1 is not a valid entity key or

list key.

38, 39, 40 a Failure No more core memory.
42 a Failure Delete rules defined incorrectly.
-3 a Warning KEY1 is nil.
-7 = Warning No entities marked for delete.

No mark list is created for failures or warnings.

4-17

Co, m nmW

CI UM560240031U
July 1989

FUNCTION: Delete an entity or list of entities and their inclusive
constituents.

FORMAT: MAEDI(KEYl,KEY2,IRC)

INPUT:
KEYl ANYKEY

The entity or list of entities to be
deleted.

OUTPUT:
KEY2 LISTIEY

The list of entities marked for delete.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key, and the order
of the entities in the list may be important. KEY2 will list
any entities from the KEY1 list that were not deleted. If all
entities are deleted, the mark list will be empty.

The possible return code values are:

0 a Success
17 a Failure KEY1 is not a valid entity key or

list key.
38, 39, 40 a Failure No more core memory.

42 a Failure Delete rules defined incorrectly.
-3 = Warning No entities to be tested for

delete, or no entities would be
deleted.

-7 a Warning No entities marked for delete.

No mark list is created for failures or warnings.

4-18

ON F AU I

CI UM560240031U
July 1989

FUNCTION: Delete test an entity or list of entities.

FORMAT: MAEDT (KEY1,KEY2,KEY3,IRC)

INPUT:
KEYl ANYKEY

The entity or list of entities to be tested.

OUTPUT:
KEY2 LISTKEY

The list containing entities that would be
deleted by MAED.

KEY3 LISTKEY
46 The list containing entities that would be

marked by MAED.

IRC : INTEGER
The return code.

DESCRIPTION: The MAEDT delete routine simulates the output of the MAED
routine without actually deleting the entities or marking them
inactive.

The possible return code values are:

0 = Success
17 - Failure KEY1 is not a valid entity key or

list key.
38, 39, 40 - Failure No more core memory.

42 a Failure Delete rules defined incorrectly.
-3 - Warning No entities to be tested for

delete or no entities would be
deleted.

-7 a Warning No entities marked for delete.

4-19

CI UM560240031U
July 1989

FUNCTION: Delete test an entity or list of entities and their inclusive

constituents.

FORMAT: MAEDTI(KEYI,KEY2,KEY3,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be tested.

OUTPUT:
KEY2 LISTKEY

The list containing entities that would be
deleted by MAEDI.

KEY3 LISTKEY
The list containing entities that would be
marked by MAEDI.

IRC : INTEGER
The return code.

DESCRIPTION: The MAEDTI delete routine simulates the output of the MAEDI
routine without actually deleting the entities or rendering
them inactive.

The possible return code values are:

0 - Success
17 = Failure KEY1 is not a valid entity key or

list key.
38, 39, 40 - Failure No more core memory.

42 - Failure Delete rules defined incorrectly.
-3 = Warning No entities to be tested for

delete or no entities would be
deleted.

-7 = Warning No entities would be marked for
delete.

4-20

CI UM60240031U
July 1989

4.3.5 Activate Operations

These operations are used to activate an entity. An entity is
deactivated when a delete was attempted, but was not completed because of
the user's dependency condition on the entity. (See Delete Operations
Section.)

The activate routines are shown in Table 4-6 and the following pages.

TABLE 4-6

ACTIVATE ROUTINES

DESCRIPTION ROUTINE

Activate an entity or list of entities. MAEA

Activ* e an entity or list of entities and their MAEAI
inclusive constituents.

Find the present value of the activation setting for MAEAV
an entity.

o Activation is not the same as rejection after a delete. If an entity
was deleted, then it cannot be recovered with these functions.

o Activation functions will activate any entity regardless of when or how
it was made inactive.

4-21

-WVAM

CI UM560240031U
July 1989

KAEA

FUNCTION: Activate an entity or list of entities.

FORMAT: MAEA (KEY1,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be
activated.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: KEYl may be either an entity key or a list key. If KEY1 is an
entity key then only that entity will be activated. If KEY1
is a list key then all entities in the list will be
activated.

The possible return code values are:

0 = Success
17 = Failure KEYI is not a valid entity key of

list key.
18 = Failure KEYl is nil.

38, 39, 40 = Failure No more core memory.

4-22

Cl UM560240031U

July 1989

MIAEAI

FUNCTION: Activate an entity or list of entities and their inclusive
constituents.

FORMAT: MAEAI(KEYl,IRC)

INPUT
KEY1 ANYKEY

The en.'ity or list of entities to be
activated.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: KEYl may be either an entity key or a list key. If KEY1 is an
entity key then only that entity and its inclusive
constituents will be activated. If KEY1 is a list key then
all entities in the list and their inclusive constituents will
be activated.

Refer to the System Overview Section for further explanation
of inclusive constituents.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key or

list key.
18 a Failure KEY1 is nil.

38, 39, 40 = Failure No more core memory.

4-23

cowmtme

Ci UM560240031U
July 1989

MAEAV

FUNCTION: Find the present value of the activation setting for an entity.

FORMAT: MAEAV(KEY1,IAVAL,IRC)

INPUT:
KEYl ENTKEY

The entity to be examined.

OUTPUT:
IAVAL INTEGER

The activation code.
= 0 if set for delete
= 1 if not set for delete

IRC : INTEGER
The return code.

DESCRIPTION: Returns the current value of the activation setting for the
specified entity.

The possible return code values are:

0 = Success
18 = Failure KEY1 is nil.

38, 39, 40 = Failure No more core memory.

4-24

conmnAN

C1 UM560240031U
July 1989

4.3.6 Application Flag Operations

These operations are used to query or set any application accessible flag

associated with an entity.

The Application Flag routines are shown in Table 4-7, and the following

pages.

TABLE 4-7

APPLICATION FLAG OPERATIONS

DESCRIPTION ROUTINE

For all entities in the model, reset the specified flag. MAERST

For all entities in the model, reset the process flag and MABRST

the application flag.

For an entity or list of entities, update the MAUPDT

specified flag.

For the constituents of an entity or list of MACPDT

entities, update the specified flag.

For the inclusive constituents of an entity or list of MAESCI

entities, update the process flag.

For an entity, query the specified flag. MAQURY

Determine whether the user compresses with its MAECQY
constituent.

Create a list of constituents with which the input MAECMP
entity compresses.

4-25

m1Nm/

C1 UM560240031U
July 1989

TABLE 4-7 (contd.)

DESCRIPTION ROUTINE

Reset Process Flag for all entities in the model. MAESWA

Set the Process Flag in an entity or list of entities. MAESWT

Find the Process Flag setting of an entity. MAESVL

4-26

OnOwML

CI UM560240031U
July 1989

KAERST

FUNCTION: Reset given application accessible flag in all entities in the

model.

FORMAT: MAERST(FUGNAME,IRC)

INPUT:
FLAGNAME NAMTYP

The name of the flag to be reset in all
entities in the model. Can have the
folloving values:

1) /MRDFLG' activation flag
2) /PRCFLG' process flag
3) /ABSFLG' absent/present flag
4) /APLFLG' application flag

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: Determine what flag is to be reset in every entity in the
model. Resets that flag to /off'.

The possible return code values are:

0 = Success
34 = Failure Invalid flag name.
35 - Failure No model established.

38, 39, 40 = Failure No more core memory.

4-27

cmwmmta

CI UM560240031U
July 1989

FUNCTION: Reset the process and application flags on each entity in the

working form model.

FORMAT: MABRST(IRC)

INPUT:
NONE

OUTPUT:
IRC INTE&ER

The rvtnx code.

DESCRIPTION: For each entity in the wzrking form model, the process and
application SYSUSE flags are turnet off.

The possible return code values arm

0 = Success
35 = Failure No model has been established.

4-28

CI UM560240031U
July 1989

KAUPDT

FUNCTION: Update the value of a given application accessible flag for an
entity or list of entities.

FORMAT: MAUPDT(KEY1,FLGNAME, FLGVAL,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities whose
specified flag value will be updated.

FLAGNAME : IAMTYP
The name of the flag to be updated. Can have
the following values:

1) /HRDFLG' activation flag
2) /PRCFLG' process flag
3) /ABSFLG' absent/present flag
4) /APLFLG' application flag

FLGVAL : INTEGER
The value of the specified flag to be used
when updating.
0 = false
1 = true

IRC : INTEGER
The return code.

DESCRIPTION: Determine which flag is to be updated, and replace that value.

The possible return code values are:

0 = Success
17 = Failure KEY1 is nil or not an entity.
34 = Failure Invalid flag name.

38, 39, 40 = Failure No more core memory.

4-29

0"ooAw1 t

CI UM560240031U
July 1989

MACPDT

FUNCTION: Update a specified SYSUSE flag val.e for the constituents of

an entity or a list of entities.

FORMAT: MACPDT(KEY1 ,FLGNAME,FLvAL, IRC)

INPUT:
KEYl ANYKEY

The key of an entity or list of entities
whose constituents will be updated.

FLGNAME RAMTYP

The name of the flag to be updated. It can
have the following values:

1) /MRDFLG' activation flag
2) /PRCFLG' process flag
3) /ABSFLG' absent/present flag

4) /APLFLG' application flag

FLGVAL : INTEGER
The value of the specified flag to be used
when updating.

0 = False
1 a True

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: Determine what value of a flag is to be updated. Collect the
constituent entities to be updated. Update the entities.

The possible return code values are:

0 = Success

17 = Failure KEY1 is not a valid entity key or
list key.

18 = Failure KEY1 is nil.
34 = Failure Undefined flag name.

38, 39, 40 = Failure No more core memory.
-6 = Warning The entity or list of entities had

no constituents.

4-30

c"1rnwmt

CI UM560240031U
July 1989

FUNCTION: Set or reset the process flag for the inclusive constituents

of an entity or a list of entities.

FORMAT: MAESCI(KEY1,ISWT,IRC)

INPUT:
KEY1 ANYKEY

The key to an entity or list of entities.

ISWT INTEGER
The ordinal value of true or false.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: Given a valid key, the inclusive constituents of an entity or
list of entities are collected. Each collected constituent
entity's process flag is updated with the given value.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key or

list key.
18 = Failure KEY1 is nil.

38, 39, 40 = Failure No more core memory exist.
-6 = Warning The entity or list of entities had

no constituents.

4-31

ow~mm

CI UM560240031U
July 1989

FUNCTION: Determine the value of a given application accessible flag for
the entity.

FORMAT: MAQURY(KEY1 , FLAGNANE , FLGVAL, IRC)

INPUT:
KEY1 ENTKEY

The entity whose specified flag value is to
be retrieved.

FLAGNAME : NAMTYP

The name of the flag to be retrieved. Can
have the following values:

1) /IMRDFLG' activation flag
2) !PRCFLG' process flag
3) /ABSLG absent/present flag
4) /APLFLG' application flag

OUTPUT:
FLGVAL : INTEGER

The value of the specified flag.
0 = false
1 = true

IRC : INTEGER

The return code.

DESCRIPTION: Determine which flag is to be retrieved, and return that value.

The possible return code values are:

0 = Success
17 a Failure KEYl is nil or not an entity.
34 a Failure Invalid flag name.

38, 39, 40 a Failure No more core memory.

4-32

CI UM560240031U
July 1989

FUNCTION: Determine whether the user compresses with its constituent.

FORMAT: MAECQY(KEY1,KEY2,CMPFLG,IRC)

INPUT:
KEY1 ENTKEY

..Key of the entity whose const',uent is to be
checked.

KEY2 ENTKEY
Key of the constituent whose rule is to be
checked.

OUTPUT:
CMPFLG : INTEGER

Value of the user's compress rule in relation
to its constituent.
1 = true
0 = false

IRC INTEGER
The return code.

DESCRIPTION: Query constituent compress rule to its user.

The possible return code values are:

0 - Success
17 - Failure KEY1 is not a valid entity key or

list key.
18 w Failure KEY1 is nil.

38, 39, 40 = Failure No more core memory.
42 = Failure Delete rules defined incorrectly.

No value is returned for the return codes of failure.

4-33

CI UM560240031U
July 1989

FUNCTION: Create a list of constituents with which the input entity

compresses.

FORMAT: MAECMP(KEY1,KEY2,IRC)

INPUT:
KEY1 ENTKEY

Key of the entity thats compressibility is
determined by the constituent(s).

OUTPUT:
KEY2 LISTKEY

List of the constituents that cause the
compression of the input entity.

IRC : INTEGER
Return code

DESCRIPTION: KEY2 is initialized to nil. Each constituent whose delete
rule states that the input entity will be compressed will be
added to KEY2.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key or

list key.
18 - Failure KEY1 is nil.

38, 39, 40 = Failure No more core memory.
42 = Failure Delete rules defined incorrectly.
-6 = Warning The entity or list of entities had

no constituents.

No list is created for failures or warnings.

4-34

OOuK7i9RAWm m ! -I Rm ~

CI UM560240031U
July 1989

MAESWA

FUNCTION: Reset Process Flag for all entities in the model.

FORMAT: MAESWA(IRC)

INPUT:
NONE

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: The Process Flag is set to OFF in all entities in the
working-form model.

The possible return code values are:

0 = Success
38, 39, 40 = Failure No more core memory.

4-35

mmlsm

CI UM560240031U
July 1989

MAEW

FUNCTION: Set the Process Flag in an entity or a list of entities.

FORMAT: MAESWT(KEY1, ISWT,IRC)

INPUT:
KEYl ANYKEY

The entity or list of entities whose process
flag is to be set.

ISWT INTEGER
The input value of the process flag.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: The process flag will be set to the value specified by ISWT.
If KEY1 is an entity key, then the flag in that entity will be
set. If KEY1 is a list key, then the flag in all entities
referenced by the list will be set. ISWT should be "1' for
flag setting of true and "0" for flag setting of false.

The possible return code values are:

0 = Success
17 - Failure KEY1 is not a valid entity key or

list key.
18 = Failure KEY1 is nil.

38, 39, 40 = Failure No more core memory.

4-36

i

CI UM560240031U

July 1989

FUNCTION: Find the Process Flag setting of an entity.

FORMAT: MAESVL(KEYI,1SET, IRC)

INPUT:
KEY1 KEY

The entity for which the flag setting is
wanted. This must be an entity key.

OUTPUT:
ISET INTEGER

The output value of the process flag.

IRC INTEGER
The return code.

DESCRIPTION: The value of the process flag for KEY1 will be returned. If
the flag is true, then the value "I" will be returned. If the
flag is false, then the value "0" will be returned.

The possible return code values are:

0 = Success
18 - Failure KEY1 is not a valid entity key or

list key.
38, 39, 40 a Failure No more core memory.

4-37

CI UM560240031U"
July 1989

4.4 List Ouerations

This section explains the use of the MAS list operations. A list is a
temporary internal structure that contains references to entities. Since
the application can build lists that take up space in the working model, it
is necessary that the applications periodically delete the lists that are no
longer needed.

Many list operations will accept either a list key or an entity key as
input keys. When an entity key is supplied, 't is assumed that the
constituent list of the entity becomes the list to be operated on.

Some operations on lists may result in the same entity being in the
output list more than once. The operation (HALRDE) can be used to remove
duplicate entities from the list.

1 operations that create an application list automatically set the
position of the list to the beginning. Once a list has been read to the
end, it must be reset before the sequential read process can begin again.

When an entity is deleted, all references to it in all application lists
are automatically removed and the current positions of the affected lists
are adjusted to retain their original meaning.

The basic list operations can be categorized by the following functions:

Create application lists
Query application lists and constituent lists
Update application lists and constituent lists
Update application lists only
Boolean operations
Delete application lists.

Included with the list operations descriptions are the error and varniug
messages that may be returned. Appendix C contains a complete list of these
messages along with their numeric codes.

4-38

nn n .Wi.

CI UM560240031U
July 1989

4.4.1 Create Operations - Application Lists

These operations create application lists. The first two create empty

lists to be updated by the user routine. The others create lists of

entities based on some selection criteria.

The create routines are shown Table 4-8, and the following pages.

TABLg 4-8

CREATE ROUTINES

DESCRIPTION ROUTINE

Creates an empty list, MAL

Create an empty list of specified size. MALN

Create a list of entities with a given KIND. MALK

Create a list of entities with a given KIND that are MALKL
found within another list.

Makes a copy of a list. MALCPY

Create an application list of constituent entity MAEC
references.

Create an application list of inclusive constituent MAECI
entities.

Create an application list of inclusive constituents MAECIK
by KIND.

4-39

CI UM560240031U
July 1989

TABLE 4-8 (contd.)

DESCRIPTION ROUTINE

Create an application list of entities of a specified MALKC
KIND taken from the constituents of an entity or from
the constituents of a list of entities.

Create an application list of user entity references. MAEU

Create an application list of inclusive user entities. MAEUI

Create an application list of inclusive users by KIND. MAEUIK

Create an application list of entities of a specified KIND MALKU
taken from the users of an entity or from the users of a
list of entities.

4-40

CI UM560240031U
July 1989

FUNCTION: Creates an empty list.

FORMAT: MAL(KEYI,IRC)

INPUT:
NONE

OUTPUT:
KEY1 : LISTKEY

The key of the empty list.

IRC INTEGER

The return code.

DESCRIPTION: An empty list is created.

The possible return code values are:

0 = Success
3 = Failure Cannot create list.

38, 39, 40 = Failure No more core memory.

4-41

CI UM560240031U
July 1989

MALN

FUNCTION: Create an empty list of specified size.

FORMAT: MALN(LSIZE,KEYI,IRC)

INPUT:
LSIZE : INTEGER

The number of entries in the list.

OUTPUT:
KEYl LISTKEY

The key of the empty list of specified size.

IRC : INTEGER
The return code.

DESCRIPTION: An empty application list will be created with sufficient
space to accommodate LSIZE entries. All entries are
initialized to nil.

The possible return code values are:

0 = Success
3 = Failure Cannot create list.

15 = Failure Requested a list size too large.
38, 39, 40 = Failure No more core memory.

4-42

oomnumsm

CI UM560240031U
July 1989

IMALK

FUNCTION: Create a list of entities with a given KIND.

FORMAT: MALK(KIND, KEY1, IRC)

INPUT:
KIND INTEGER

A valid KIND code.

OUTPUT:
KEY1 LISTKEY

The list of all etities of the specified
KIND.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 is initialized to nil. If KIND is a valid value, all

entities of the given KIND will be copied into KEY1.

The possible return code values are:

0 = Success
38, 39, 40 a Failure No more core memory exists.

-1 = Warning No such kind exists.

No list is created for failures or warnings.

4-43

Cl UM560240031U

July 1989

MALI

FUNCTION: Create a list of entities with a given KIND that are found
within another list.

FORMAT: MALKL (KEYI,KIND, KEY2, IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities whose list is
to be searched for the specified KIND.

KIND INTEGER
The KIND code of an entity.

OUTPUT:
KEY2 LISTKEY

The list that will contain all entities of
the given KIND found within the list
specified by KEY1.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is initialized to nil. If KEY1 is an entity key, copy
all constituents of the given kind on KEY2. If KEY1 is a list
key, put all entities on the list of the given kind on KEY2.

The possible return code values are:

0 = Success
14 a Failure Model is corrupted.
17 = Failure KEYl is not a valid entity key

or list key.

18 = Failure KEY1 is nil.
38, 39, 40 = Failure No more core memory exists.

-1 = Warning No such kind exists.
-6 a Warning The entity or list of entities

had no constituents or entities
of the given kind.

No list is created for failures or warnings.

4-44

L

CI UM560240031U
July 1989

MALCP

FUNCTION: Makes a copy of a list.

FORMAT: MALCPY(KEY1,KEY2,IRC)

INPUT:
KEY1 LIST1E¥

A list key whose entries will be copied.

OUTPUT:
KEY2 LISTKEI

The new list that will receive a copy of KEY1.

IRC INTEGER
The return code.

DESCRIPTION: KEY2 will be created. The elements of KEY1 will be copied
into KEY2.

The possible return code values are:

0 = Success
17 - Failure KEY1 Is nil or not an

application list.
38, 39, 40 - Failvre No more core memory.

4-45

CI UM560240031U
Juy 1989

FUNCTION: Create an application list of constituent entities.

FORMAT: MAEC(KEYlKEY2,IRC)

INPUT:
KEY1 ANYEY

The entity or list of entities for which a
list of direct constituents is wanted.

OUTPUT:
KEY2 LISTKEY

The returned key of the application list of
direct constituents.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is created. If KEY1 is an entity key then the
constituent list of KEY1 will be copied into KEY2. If KEY1 is
a list key then the constituent lists of each entity will be
copied into KEY2.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key

or list key.
18 = Failure KEY1 is nil.
39 a Failure No more core memory.
-6 a Warning The entity or list of entities

had no constituents.

No list is created for the return codes of failure (17, 18,
39) or warning (-6), and KEY2 is nil.

4-46

CI UM560240031U
July 1989

FUNCTION: Create an application list of inclusive entities.

FORMAT: NAECI(KEY1,KEY2, IRC)

INPUT:
KEY1 AWYKE

Tht entity or list of entities whose
inclusive constituents are wanted.

OUTPUT:
KEY2 LISTKEY

The returned key of the inclusive application
list of constituents.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is created. If KEY1 is an entity key, then the inclusive
constituent list of XEYl will be copied into KEY2. If KEYl is
a list key, then the inclusive constituent lists of each
entity will be copied lntu KEY2. KEY1 is not included in
KEY2. No duplicate keys will exist.

NOTE: See the System Overview Section, page 1.5.2, for further
explanation of inclusive constituents.

The possible return code values are:

0 = Success
17 a Failure KEY1 is not a valid entity key

or list key.

18 = Failure KEYl Is nil.
39 = Failure No more core memory.
-6 a Warning The entity or list of entities

had no constituents.

No list is created for the return codes of failure (17, 18,
39) or warning (-6), and KEY2 is nil.

4-47

CI UM560240031U
July 1989

FUNCTION: Create an application list of inclusive constituents of a

specified KIND.

FORMAT: MAECIK(KEY1,KIND,KEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities vhose
inclusive constituents are to be searched for
by specified KIND.

KIND INTEGER
The KIND code of an entity or an entity class.

OUTPUT:
KEY2 LISTKEY

The key of a list vhich vill contain all
entities of the specified KIND found within
the inclusive constituents of KEY1.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is initialized to nil. If KEY1 is a valid entity key,
then the inclusive constituents of the specified KIND will be
copied into KEY2. If KEY1 is a valid list key, then the
inclusive constituents of all entities on the list of the
specified KIND will be copied into KEY2. No duplicates will
exist.

The possible return code values are:

0 w Success
17 a Failure KEYl is not a valid entity key

or list key.
18 - Failure KEY1 is nil.

38, 39, 40 w Failure No more core memory.
-6 - Warning The entity or list of entities

had no constituents of the given
KIND.

No list is created for the return codes of failure or yarning.

4-48

. . . -"-masl ' -m d mi

CI UM560240031U
July 1989

FUNCTION: Create a list of entities of a specified kind found within the

constituent list of an entity or the constituent lists of a

list of entities.

FORMAT: MALKC(KEY1,KIND,KEY2,IRC)

INPUT:
KEY ANYKET

The key to an entity or list of entities.

KIND ORD_KIND
Any valid kind value.

OUTPUT:
KEY2 LISTKEY

A list of entities found within the
constItuent list of an entity or the
constituent lists of a list of entities.

IRC INTEGER
The return code.

DESCRIPTION: Given a valid kind value, the constituent of an entity or list
of entities are collected. For each collected entity of the
given kind, copy into KEY2.

The possible return code values are:

0 - Success
17 = Failure KEY1 is not a valid entity key

or list key.
18 - Failure KEY1 is nil.

38, 39, 40 - Failure No more core memory.
-1 - Warning Kind value is undefined.
-6 - Warning The entity or list of entities

had no constituents of the given
kind.

-11 - Warning The entity or list of entities
had no constituents.

No list is created for failures or warnings.

4-49

OMwMotl

CI UM560240031U
July 1989

FUNCTION: Create an application list of user entity references.

FORMAT: MAEU(KEY1,KEY2,IRC)

INPUT:
KEY1 AMYKEY

The entity or list of entities for which a
list of direct users is wanted.

OUTPUT:
KEY2 LISTKEY

Returned key of the application list of
dizect users.

IRC INTEGER
The return code.

DESCRIPTION: KEY2 is initialized to nil. If KEYI is a valid entity key,
then the user list of KEY1 will be copied into KEY2. If KEY1
is a valid list key, then the user lists of each entity will
be copied into KEY2.

The possible return code values are:

0 a Success
17 a Failure KEYI is not a valid entity key

or list key.
18 = Failure KEY1 is nil.

38, 39, 40 a Failure No more core memory.
-6 = Warning The entity or list of entities

had no users.

No list is created for the return codes of failure or warning.

4-50

CI UM560240031U
July 1989

MA E II

FUNCTION: Create an application list of inclusive user entities.

FORMAT: MAEUI(KEY1,KEY2,IRC)

INPUT:
KEY1 AlIY

The entity or list of entities whose
inclusive u-ers are wanted.

OUTPUT:
KEY2 LISTKEY

The returned key of the inclusive application
list of users.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is initialized to nil. If KEY1 is a valid entiLy key,
then the inclusive user list of KEYl will be copied into
KEY2. If KEY1 is a valid list key, then the inclusive user
lists of each entity will be copied into KEY2. KEY1 is not
included in KEY2. There will be no duplicates.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key

or list key.
18 = Failure KEY1 is nil.

38, 39, 40 = Failure No more core memory.
-6 = Warning The entity or list of entities

had no users.

No list is created for failures or warnings.

4-51

CI UM560240031U
July 1989

FUNCTION: Create an application list of inclusive users by KIND.

FORMAT: MAEUIK(KEY1,KIND,KEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities whose
inclusive users are to be searched for by
specified KIND.

KIND INTEGER
The KIND code of an entity or an entity class.

OUTPUT:

KEY2 LISTKEY

The key of a list which will contain all
entities of the given KIND found within tne
inclusive users of IK .Y1.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is initialized to nil. If KEY1 is a valid entity key,
then the inclusive users of the given KIND will be copied into
KEY2. If KEY1 is a valid list key, then the inclusive users
of all entities on the list of the given KIND will be copied
into KEY2. No duplicates will exist.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key

or list key.
18 = Failure iEYl is nil.

38, 39, 40 = Failure No more core memory.
-6 = Warning The entity or list of entities

had no users of the given KIND.

No list is created for failures or warnings.

4-52

cownWo~

CI UM60240O31U
Ju'* 196

FUNCTION: Create a list of entities of a specified kind found within the

user list of an entity or the user lists of a list of entities.

FORMAT: MALKU(KEY1,KINDKEY2 ,IRC)

INPUT:
KEY1 ANYKEY

The key to an entity or list of entities.

KIND ORDKIND
Any valid kind value.

OUTPUT:
KEY2 LISTKEY

A list of entities found within the user list
of an entity or the user lists of a list of
entities.

IRC : INTEGER
The return code.

DESCRIPTION: Given a valid kind value, the users of an entity or list of
entities are collected. For each collected entity of the
given kind, copy into KEY2.

The possible return code values Lre:

0 = Success
17 - Failure KEY1 is not a valid entity key

or list key.

18 - Failure KEY1 is nil.
38, 39, 40 - Failure No more core memory exists.

-1 = Warning Kind value undefined.
-6 - Warning The entity or list of entities

had no users of the given KIND.
-11 a Warning The entity or list of entities

had no users.

No list is created for failures or warnings.

4-53

00"I.U

Cl UM50240031U
July 1988

4.4.2 Query Operations - ADlication Lists And Constituent Lists

Table 4-9 shows routines that query application lists and constituent

lists:

QUERY OPERATIONS - APPLICATION AND CONSTITUENT LISTS

DESCRIPTION ROUTINE

Determine the number of entries in a list. MALNO

Find the position in a list of a specified entity key. MALFND

Read the entity key at the specified position in the list. MALCTK

Read the next entry in a list. MALRD

Setup for reading in a forward direction. MALSTF

Setup for reading in reverse direction. MALSTR

Routines are further described on the following pages.

4-54

com m llm m mN l- -,m • u m m m m m m

CI UM560240031U
July 1989

FUNCTION: Count the entities in a list.

FORMAT: MALNO (KEY1,KOUNT,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be counted

OUTPUT:
KOUNT : INTEGER

The number of entities in the list.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is an
entity the number of constituents is returned. If KEYl is a
list the number of entities on the list is returned.

The possible return code values are:

0 a Success
17 - Failure KEY1 is not an entity or an

application list.
38, 39, 40 = Failure No more core memory.

KOUNT is returned zero for all failures.

4-55

ownuoum

CI UM560240031U
July 1989

FUNCTION: Find the position of an entity in a list. If flY1 is an
entity, find its position in the constituent list of that
entity.

FORMAT: MALFND(KEY1 ,KEY2, IFIRST, IPOS,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities in which KEY2
is to be found.

KEY2 ENTKEY
The entity to be found in KEY1.

IFIRST : INTEGER
The position in KEY1 where the find operation
is to start.

OUTPUT:
IPOS INTEGER

The position in KEY1 where KEY2 is found.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is a
list then KEY2 is found in the list. If KEY1 is an entity,
then 1EY2 is found in the constituent list of 13Y1. KEY2 must
be an entity key. The find starts at position IFIRST. Each
entity in KEY1 is exaLined for equality with KEY2 starting
with the specified position. If a match is found, then the
position is returned in IPOS. If there is no match, then IPOS
is returned as zero and IRC signals an error. If there are
multiple matches, then only the first (leftmost) match is
returned in IPOS.

The possible return code values are:

0 a Success
17 = Failure KEY1 is not an entity or an

application list.
18 a Failure KEY1 is nil.
25 = Failure No match was found.

38, 39, 40 a Failure No more core memory.

4.56

... . wn" Ms

CI UM560240031U

July 1989

FUNCTION: Get the Nth Key from a list.

FORMAT: NALGTK(KEY1, IPOS ,KEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be
processed.

IPOS INTEGER
The position in tho list of the target entity.

OUTPUT:
KEY2 ENTKEY

The requested key.

IRC : INTEGER

The return code.

DESCRIPTION: If KEY1 is a list, get the IPOS entry from the list. If KEY1
is an entity, get the IPOS entry from the constituent list of
KEY1.

The possible return code values are:

0 u Success
14 - Failure IPOS is outside the range of the

application list.

17 - Failure KEY1 is not an entity or an
application list.

38, 39, 40 - Failure No more core memory.

4-57

ODKIFtWM

CI UM560240031U
July 1969

FUNCTION: Read the next entry in a list.

FORMAT: MALRD(KEY1 ,KEY2, IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be read.

OUTPUT:
KEY2 ENTKEY

The entity of the next list entry. Next
depends on the direction of the read set by
MALSTF or MALSTR.

IRC : INTEGER
The return code.

DESCRIPTION: The next entity in the list is returned. We recommend setting
the direction by using MALSTF or MALSTR before the first time
this routine is used to read a list.

The possible return code values are:

0 = Success
17 w Failure KEY1 is not a valid entity key

or list key.
32 a Failure Cannot read constituent lis
33 - Failure Cannot read constituent list.

38, 39, 40 = Failure No more core memory exists.
-5 = Warning End of list reached.

4-58

ewYmm

CI UM560240031U
July 1989

FUNCTION: Setup for reading in forward direction.

FOR.MAT: MALSTF(KEY1,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be
processed in a forward direction.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: If KEY1 is an entity, then the constituent list of KEY1 will
be set up for forward processing. If KEY1 is an application
list, the list will be set up for forward processing.

The possible return code values are:

0 = Success
17 a Failure KEY1 is not a valid entity key

or list key.
18 = Failure KEYl is nil.
32 = Failure Cannot read constituent list.
33 a Failure Cannot read constituent list.

38, 39, 40 a Failure No more core memory.

4-59

CI UM560240031U
July 1989

MALSTR

FUNCTION: Setup for reading in reverse direction.

FORMAT: MALSTR(KEY1,IRC)

INPUT:
KEY : A.NYKEY

The entity or list of entities to be
processed in the reverse direction.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: If KEY1 is Am en.l¥t, then the constituent list of KEY1 will
be set up ftw reverse processing. If KEY1 is an application
list, the iJzt wi1 be aet up for reverse processing.

The possible return code walues are:

0 = Succei
17 = Failwr KEY1 is not a valid entity key

or list key.

18 - Failure KEY1 is nil.
32 - Failure Cannot read constituent list.
33 - Failure Cannot read constituent list.

38, 39, 40 a Failure No more core memory.

4-60

ome

C1 UM6240031U
July 1989

4.4.3 Update Operations - Application Lists and Constituent Lists

Table 4-10 presents the update routines that apply to both application
lists and constituent lists:

UPDATE OPERATIONS - APPLICATION AND CONSTITUENT LISTS

DESCRIPTION ROUTINE

Attach an entity or list of entities to a list. MALATC

Insert an entity or list of entities into a list. NALINS

Remove an entity from a list. MALRNV

Replace an entity in a list. MALRPL

Replace a list (all of the entries). MALREP

Reverse the order of a list. MALRVS

Routines are further described on the following pages.

4-61

C1 UM560240031U

FUNCTION: Attach an entity or list of entities to a list. If KEY1 is an

entity then attach to the constituent list of that entity.

FORMAT: MALATC(KEY1,KEY2,IRC)

INPUT:
KEYI ANYKEY

The entity or list of entities to which KEY2
is to be attached.

M!2 : ANYKE¥
The entity or list to be attached to KEY1.

OUTPUT:
IRC Z INTEGER

The return code.

DESCRIPTION: KEY1 may be either am entity Xey or a list key. If KEY1 is a
list, then KEY2 is attached to the list. If KEY1 is an
entity, then KEY2 is attached to the constituent list of
KEY1. 'This will make KEY2 a constituent of KEY1. KEY2 may be
either an entity key or a list key. If KEY2 is a list, then
the entire list is attached to KEY1. This is the same as
doing multiple attaches of an entity. If KEY2 is an entity,
then the entity is attached to KEY1.

EXAMPLE: See Sample Programs Section.

The possible return code values are:

0 = Success
9 - Failure ICY1 is uil.

10 a Failure KEYI is not an entity or an
application list.

38, 39, 40 z Failure No more core memory.

4-62

00KIotWW

CI UM560240031U
July 1989

flALINS

FUNCTION: Insert an entity or list of entities into a list. If KEY1 is
an entity, then insert into the constituent list of that
entity.

FORMAT: NALINSC(KEY1,KEY2,IPOS,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities in which KEY2
is to be inserted.

KEY2 ANYKEY
The entity or list to be inserted in KEY1.

IPOS INTEGER
The position in KEY1 where the insert is to
take place.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: IEYl may be either an entity key or a list key. If KEY1 is a
list, then KEY2 is inserted in the list. If KEY1 is an
entity, then KEY2 is inserted in the constituent list of
KEY1. KEY2 may be either an entity key or a list key. If
KEY2 is a list, then the entire list is inserted in KEY1. If
KTY2 is an entity, then the entity is inserted in KEY1.

The insert takes place before IPOS. That is, the entity at
IPOS is moved by one position if KEY2 is an entity or by the
number of elements in the list if KEY2 is a list. Then the
elements are moved into the vacated positions.

The possible return code values are:

0 w Success
14 a Failure Given position is outside range

of list.
17 w Failure KEY1 is not an entity or an

application list.
18 - Failure KEY1 is nil.
32 - Failure Cannot read constituent list.
33 - Failure Cannot read constituent list.

38, 39, 40 a Failure No more core memory.

4-63

oMUM

CI UM560240031U
July 1989

FUNCTION: Remove an entity from a list. If KEY1 is an entity, then

remove it from the constituent list of that entity.

FORMAT: MALRV(KEY1,IPOS,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities from which an
entity is to be removed.

IPOS INTEGER
The position, in the list, of the entity to
be removed.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is a
list, then an entity is removed from the list. If KEY1 is an
entity, then an entity is removed from the constituent list of
KEY1. IPOS is the position number of the entity to be
removed. The HAS delete rules are used to see if the entity
can be removed from the constituent list. If the entity can
be removed, it is removed; and if it Is the last constituent
in the list, the list is deleted. If the entity removed is
marked for delete, an attempt to delete the entity will occur.

The possible return code values are:

0 = Success
14 w Failure IPOS is outside range of list.
17 = Failure KEY1 is not a valid entity key

or list key.
18 a Failure KEY1 is nil.
27 - Failure Delete rules prohibit delete.
32 n Failure Cannot read constituent list.
33 a Failure Cannot read constituent list.

38, 39, 40 a Failure No more core memory.
42 - Failure Delete rules defined incorrectly.

4-64

CI UM560240031U
July 1989

IALRPL

FUNCTION: Replace an entity in a list. If KEYl is an entity, then

replace in the constituent list of that entity.

FORMAT: MALRPL(KEYI,KEY2,IPOS,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities in which an
entity is to be replaced.

KEY2 ENTKEY
The entity that will replace an entity in
KEY1.

IPOS INTEGER
The position of the entity in KEY1 to be
replaced.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is a

list, then an entity is replaced in the list. If KEY1 is an
entity, then an entity is replaced in the constituent list of
KEY1. KEY2 must be an entity key. The entity at position
IPOS in KEYl will be replaced by KEY2. If the entity being
replaced is "MARKED FOR DELETE," then an attempt is made to
delete the entity.

The possible return code values are:

0 = Success
14 = Failure IPOS is outside range of list.
17 - Failure KEYI is not a valid entity key

or list key.
18 = Failure KEYl is nil.
27 a Failure Delete rules prohibit delete.
32 = Failure Cannot read constituent list.

33 = Failure Cannot read constituent list.
38, 39, 40 = Failure No more core memory exists.

4-65

CWFWnM

CI UM560240031U
July 1989

MALREP

FUNCTION: Replace a list. If KEY1 is an entity, then replace the

constituent list of that entity.

FORMAT: MALREP(KEY1,KEY2,IRC)

INPUT:
KEY1 ANYY

The entity or list of entities to be replaced.

KEY2 ANYKEY
The entity or list to replace KEY1.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: KEYl may be either an atutity key or a list key. If KEY1 is a
list, then KEY2 replaces KEY1. If KEY1 is an entity, then the
constituent list of KEYl is replaced by KEY2. KEY2 may be
either an entity or a list key.

The possible return code values are:

0 w Success
17 a Failure KEY1 is not a valid entity key

or list key.
18 = Failure KEY1 is nil.
32 - Failure Cannot read constituent list.
33 = Failure Cannot read constituent list.

38, 39, 40 = Failure No more core memory.

4-66

nm ----

Cl UM560240031U
July 1989

MALRVS

FUNCTION: Reverse the order of the entities in a list.

FORMAT: MALRVS(KEY1,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities in which the
order of the entities is to be reversed.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: KEYl may be either an entity key or a list key. If KEY1 is a
list, then the list is reversed. If KEY1 is an entity, then
the constituent list is ri "sed.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key

or list key.
38, 39, 40 - Failure No more core memory exists.

-6 = Warning KEYI is empty.

4-67

00moIjM

CI UM560240031U
July 1989

4.4.4 Update Operations - ADDlication Lists Only

Table 4-1 shows routines that update an application list (they do not
apply to constituent lists):

TABLE 4-11

UPDATE OPERATIONS - APPLICATION LISTS

DESCRIPTION ROUTINE

Reset an application list to be reused. HALRST

Remove duplicate entries from an application list. MALRDE

Sort the entries in an application list into MALROR
user-constituent order.

Sort the entries in an application list into inclusive MALRRI
user-constituent order.

Routines are further defined in the following pages.

4-68

CI UM560240031U
July 1989

MALRST

FUNCTION: Reset an application list.

FORMAT: MALRST(KEYL, RC)

INPUT:
KEYL LISTKEY

The key of the application list whose entries
are to be reset.

OUTPUT:
RC INTEGER

The return code.

DESCRIPTION: Given an application list that has one or more entries, all
entries will be removed from the list, thus maintaining the
size of the original list.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key

or list key.

18 = Failure KEY1 is nil.
38, 39, 40 = Failure No more core memory.

4-69

CI UM60240031U

July 1989

MALRDE

FUNCTION: Remove duplicate entries in a list.

FORMAT: MALRDE(KEY1,IRC)

INPUT:
KEY : LISTKEY

The input/output list.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: Any duplicate entities found in the input list vill be
removed. The change is made in-place. The first instance of

each entity will be kept.

The possible return code values are:

0 = Success

17 = Failure KEY1 is not a valid entity key
or list key.

26 = Failure Duplicates not removed.
38, 39, 40 = Failure No more core memory.

4-70

C1 UM560240031U

July 1989

MALROR

FUNCTION: Reorder a list of entities so that the users appear at the

head of the list.

FORMAT: MALROR(KEYL, IRC)

INPUT:
KEYL LISTKEY

Key of an application list.

OUTPUT:
IRC INTEGER

Return code

0 a Good return
(0 Critical error
)0 Warning

DESCRIPTION: For each member of the list, search each of the remaining
members for its users; put users at the head of the list.

The possible return code values are:

0 = Success

15 = Error A list has too many members.
17 - Error Input key not a list key.
18 a Error Input key is nil.
38 = Error No more core available.

4-71

0MAUM

CI UM56240031U
July 1989

MALRRI (MALRORI)

FUNCTION: Sort the entities in an application list in inclusive user to

constituent order.

FORMAT: MALRRI(KEY,RRC) or MALRORI(KEY,RRC)

INPUT:
KEY ANYKEY

The key to an entity or list of entities.

OUTPUT:
RRC INTEGER

The return code.

DESCRIPTION: For each entity on the input list, its user list is expanded
inclusively. All users appearing on the input list will occur
before their constituents.

The possible return code values are:

0 - Success
17 - Failure KEY1 is not a valid entity key

or list key.
18 = Failure KEY1 is nil.

38, 39, 40 = Failure No more core memory.

4-72

emmm

CI UM560240031U
July 1989

4.4.5 Boolean Operations - Avlication Lists and Constituent Lists

For Boolean operations, there are two input lists and one output list.
The application is responsible for providing two input lists consistent with
the Boolean operation to be performed. No validation checking is done. If
one or both of the input lists contain duplicate entities, then the output
list may also contain duplicate entities. This result may not be consistent
with the Boolean theory operation being performed.

The Boolean routines are shown in Table 4-12, and the following pages.

BOOLEAN ROUTINES

DESCRIPTION ROUTINE

Create a list from a Boolean "AND" on two input lists. MALAND

Create a list from a Boolean "NOT" on two input lists. MALNOT

Create a list from a Boolean "0" on two input lists. MALOR

4.73

--mn nnn wa mmnn - - ,,, -,m, "

CI UM560240031U

July 1989

MIALAflD

FUNCTION: Create a list from a Boolean "AND" on two input lists.

FORMAT: HALAND(KEY1,KEY2 ,IKEY3,IRC)

INPUT:
KEY1 ANYKEY

An entity or a list that is to be AND'ed.

KEY2 ANYKEY
An entity or a list that is to be AND'ed.

OUTPUT:
KEY3 LISTKEY

The list of entities that occurred in both
KEY1 and KEY2.

IRC INTEGER
The return code.

DESCRIPTION: KEY3 is initialized to nil. KEY1 may be either an entity key
or a list key. If KEY1 is an entity key, then the constituent
list of KEY1 is AND'ed with KEY2. If KEY1 is a list key, then
KEY1 is AND'ed with EXY2. KEY2 may be either an entity key or
a list key. If KEY2 is an entity key then the constituent
list of KEY2 is AND'ed with KEY1. If KEY2 is a list key then
KEY2 is AND'ed with KEY2. The list KEY3 is created,
corresponding to the set theoretical intersection of KEY1 and
KEY2.

The possible return code values are:

0 - Success
17 - Failure KEY1 is not a valid entity key

or list key.
18 - Failure KEY1 is nil.

38, 39, 40 - Failure No more core memory.
-6 - Warning There were no entities in common.

No list is created for failures or warnings.

4-74

: Ili i mWinall~ H m

CI UM560240031U
July 1989

MALNQI

FUNCTION: Create a list from a Boolean "NOT" on two input lists.

FORMAT: MALNOT (KEY1,KEY2,KEY3,IRC)

INPUT:
KEY1 ANYKEY

An entity or a list that is to be NOT'ed.

KEY2 ANYKEY
An entity or a list that is to be NOT'ed.

OUTPUT:
KEY3 LISTKEY

The list of entities that occurred in KEY1
but not in KEY2.

IRC INTEGER
The return code.

DESCRIPTION: KEY3 Is initialized to nil. KEY1 may be either an entity key
or a list key. If KEY1 is an entity key, then the constituent
list of KEY1 is NOT'ed with KEY2. If KEY1 is a list key, then
KEY1 is NOT'ed with KEY2. KEY2 may be either an entity key or
a list key. If KEY2 is an entity key, then the constituent
list of KEY2 is NOT'ed with KEY1. If KEY2 is a list key, then
KEY2 is NOT'ed with KEY1. The list KEY3 is created,
corresponding to the set theoretical difference of KEY1 and
KEY2.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key

or list key.
38, 39, 40 = Failure No more core memory.

-6 = Warning There was no difference between
the two lists.

No list is created for failures or warnings.

4-75

CI UM560240031U
July 1989

MALOR

FUNCTION: Create a list from a Boolean "OR" on two input lists.

FORMAT: MALOR(EYI ,KEY2 ,KEY3, IRC)

INPUT:
KEY1 ANYKEY

An entity or a list that is to be OR'ed.

KEY2 ANYKEY
An entity or a list that is to be OR'ed.

OUTPUT:
KEY3 LISTKEY

The list of entities that occurred in either
KEY1 or KEY2.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is an
entity key, then the constituent list of KEY1 is OR'ed with
KEY2. If KEY1 is a list key, then KEY1 is OR'ed with KEY2.
KEY2 may be either an entity key or a list key. If KEY2 is an
entity key, then the constituent list of KEY2 is OR'ed with
KEY1. If KEY2 is a list key, then KEY2 is OR'ed with KEY1.
The list KEY3 is created, corresponding to the set theoretical
union of KEY1 and KEY2. There will be no duplicates in KEY3.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key

or list key.
18 - Failure KEYl is nil.

38, 39, 40 a Failure No more core memory.
-6 = Warning Neither key has constituents nor

application list.

No list is created for failures or warnings.

4-76

ONm

CI UM560240031U
July 1989

4.4.6 Delete Operations - AbDlication Lists Only

Table 4-13 presents the delete routines:

DELETE ROUTINES

DESCRIPTION ROUTINE

Delete an application list. MALD

Delete all application lists. MALDA

Delete an application list and all lists created MALDI
after it.

Set or unset the application list lock flag. MALOCK

Delete routines are further described on the following pages.

4-77

CI UM560240031U
July 1989

14ALV

FUNCTION: Delete an application list.

FORMAT: NALD(KEY1,IRC)

INPUT:
KEY1 LISTKEY

The list to be deleted.

OUTPUT:
IRC INTECER

The return code.

DESCRIPTION: KEYl must not be an entity key. KEY1 is deleted. KEY1 cannot

be recovered.

The possible return code values are:

0 = Success
29 = Failure KEY1 is not a list key.

38, 39, 40 = Failure No more core memory exists.

4-78

aamistm

L m lBBBll mmmmmmm

CI UM560240031U
July 1989

M1ALDA

FUNCTION: Delete all application lists.

FORMAT: MALDA(IRC)

INPUT:
NONE

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: All application lists will be deleted. They cannot be
recovered. If an application list is locked, then it will not
be deleted.

The possible return code values are:

38, 39, 40 = Failure No more core memory exists.

4-79

CI UM60240031U
July 1989

FUNCTION: Delete an application list and all lists created after it.

FORMAT: MALDI(KEY1,IRC)

INPUT:
KEY1 LISTKEY

The list to be deleted.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: KEY1 must not be an entity key. The list identified by KEY1
and all lists created after it will be deleted. Deleted lists
cannot be recovered. If an application list is locked, then
it will not be deleted.

The possible return code values are:

17 = Failure KEY1 is not a list or no lists
exist.

38, 39, 40 = Failure No more core memory exists.

4-80

oowlnww

CI UM560240031U
July 1989

MALOC

FUNCTION: Set or unset the application list lock flag.

FORMAT: MALOCK(KEYLOCK, IRC)

INPUT:
KEY1 LISTKEY

The list to be set.

LOCK INTEGER
The lock setting
=0 unlocked

=1 locked

OUTPUT:
IRC INTEGER

The return code

DESCRIPTION: A list that is locked will not be deleted by the MAS interface
functions MALDA or MALDI. All other functions that delete
lists will delete a locked list.

The possible return code values are:

17 = Failure KEY1 is not a list.
38, 39, 40 = Failure No more core memory exists.

4-81

0m0WINOl

CI UM560240031U
July 1989

4.5 Execute0Deration

Many times in an application program, it is necessary to process each
entity on a list with a user-written subroutine. An example of how each
entity of a particular KIND could be processed is shown in the followingFORTRAN example:

CALL MALK(KNDVAL,LIST, IRC)CALL MALSTF(LIST, IRC)100 CALL MALRD(LIST,ERTITrrIRC)
IF(IRC .NE. 0) COTO 200CALL MAEGTK(ENTITY,ADB,IRC)
CALL USRSUB(ENTITY,ADB,USRDAT,URC)
GOTO 100

200 CALL MALD(LIST,IRC)

Similar techniques could be used for processing an application list, a
constituent list, or a user list. Note that the return code from the
user-written subroutine may affect whether processing should continue.

The EXECUTE operations, however, provide a simpler, more efficientmethod. The previous example can be replaced with:

CALL MAXXEQ(KNDVALUSRDATUSRSUBURC,
IRC)

4-82

Cl UM560240031U
July 1989

An EXECUTE operation, shown in Figure 4-2, is invoked by a user routine
to execute a user-written subroutine for each entity on a list.

User Roune

. List of Entes

" User-Defined Data Area *UsrwWf
t n Subroutne

" User Subroutine Return Code User-Defined Data Area
" EXECUTE Operaton

Return Code
EXECUTE
Operation

" Entty Key' ~~ ~ Enlty ADB o8 Ae

*User-Defined Data Area e User-DefinedD
e User Subroutine Return Code " U

User
Suibroutne

Figure 4-2. Execute Operation

The user-written subroutine is passed as a parameter from the user
routine to the EXECUTE operation. The method by which this is done in the
multi-language environment supported by HAS is described in Section 3, which
describes both the IBM and VAX operating environments.

The user-written subroutine must use a standard parametpr list. The
following example shows the data types for the standard parameter list:

USRSUB(KEY ,ADB ,USRDAT ,URC)

where the data type for

KEY is an E1NTKEY (input).

ADB is an ENTBLOCK (input/output; note that the KIND, LENGTH, and

SYSUSE fields should not be changed).

USRDAT is user-defined (input/output).

URC is an INTEGER (output).

4-83

CowmoL

CI UM560240031U
July 1989

The possible return code values from the user-written subroutine affect

the EXECUTE operations as follows:

0 through 7 The EXECUTE operation will continue processing.

0 or > 7 The EXECUTE operation will halt processing and return
the URC to the user routine that called the EXECUTE
operation.

There are specific meanings within the above ranges for some of the

EXECUTE operations. These are explained in the routine descriptions.

Table 4-14 shows the EXECUTE routines:

EXECUTE ROUTINES

DESCRIPTION ROUTINE

Execute a procedure on an entity or a list of entities. MAEXEQ

Execute a procedure on all entities of a specified KIND. MAKXEQ

Execute a procedure on an entity or a list of entities. A.LXEQ

Execute a procedure on the constituents of an entity. MLECXQ

Execute a procedure on the users of an entity. M&AEUXQ

Execute a sorting procedure on the constituents of an M'LSRT
entity or the entities in a list.

Routines are described in the following pages.

4-84

C! UM56O240031U
July 1989

FUNCTION: Execute a procedure on a entity or a list of entities.

FORMAT: MAEXEQ(KEY1,DATA,PROC,RCC,IRC)

INPUT:
KEY1 AIYKEY

The entity or list of entities on which the
application procedure should be performed.

DATA BLKDATA
The application-defined data structure that
is passed to the application-defined
procedure.

PROC ROUTINE
Application-defined procedure that processes
one entity at a time.

OUTPUT:
RCC INTEGER

The procedure PROC return code.

IRC : INTEGER
The HAS return code.

DESCRIPTION: The entity, or each entity on an application list, is passed
to the application-defined procedure. The operation performed
on the entity is determined by the application-defined
procedure. Processing of application lists occurs in the
forward direction. Unless the default direction has been
changed by previous processing or by a call to MALSTF or
MALSTR. Processing halts when the application-defined
procedure returns RRC > 7 or RRC (0 after processing an
entity.

The possible return code values are:

0 - Success
17 - Failure KEY1 is not a valid entity key

or list key.
18 - Failure KEY1 is nil.
23 - Execution Halted RIC) 7 and RRC (a 15.
24 = Execution Halted RRC > 15 or RRC (0.

38, 39, 40 - Failure No more core memory exists.
-5 a Warning End of list reached.

4-85

imm m mM

C| UM560240031U
Juy 1989

FUNCTION: Execute a procedure on all entities of a specified kind.

FORMAT: MAKXEQ(KIND,DATAPROCRCC,IRC)

INPUT:
KIND INTEGER

The KIND value of the entities to be
processed.

DATA BLKDATA
The application-defined data structure, which
is passed to the application-defined
procedure.

PROC ROUTINE
Application-defined procedure that processes
one entity at a time.

OUTPUT:
RCC INTEGER

The procedure PROC return code.

IRC : INTEGER
The [LAS return code.

DESCRIPTION: Each entity of the specified kind is passed to the
application-defined procedure. The order of processing is in
the reverse order for which the entities were created. When
the application-defined procedure returns NRC) 7 or RIC (0,
processing halts.

The possible return code values are:

0 = Success
23 - Execution Halted RRC > 7 and RRC < = 15.
24 a Execution Halted RRC) 15 or RRC 0.

38, 39, 40 a Failure No more core memory exists.
-1 = Warning No such kind exists.

4-86

CI UM560240031U
July 1989

MALXEO

FUNCTION: Execute a procedure on a entity or a list of entities.
Construct an output list of entities as determined by the
application procedure.

FORMAT: MAIXEQ(KEY1,DATA,PROC,KEY2,RCC,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be

processed.

DATA BKDATA
The application-defined data structure, which
is passed to the application-defined
procedure.

PROC ROUTINE
Application-defined procedure that processes
one entity at a time.

OUTPUT:
KEY2 LISTKEY

The list created by this function.

RCC INTEGER
The procedure PROC return code.

IRC INTEGER
The return code produced by this operation.

DESCRIPTION: An empty list (KEY2) is created. The entity, or each entity
in sequence if a list is supplied, is passed to the
application- defined procedure. The operation performed on
the entity is determined by the application-defined
procedure. When the application-defined procedure return code
is "success," (RCC - 0 or 1), the entity just processed Is
added to the result list. When an application-defined
procedure returns code is "failure", ((0 or) 7), MALXEQ is
terminated. When an application-defined procedure return code
is "warning" (2 through 7), the entity just processed is not
placed on the result list, but processing continues.

The processing of application lists occurs in the forward
direction unless the default direction has been changed by
previous processing or by a call to MALSTF or MALSTR.

4-87

CI UM560240031U'
July 1989

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key

or list key.

18 = Failure KEY1 is nil.
23 = Execution Halted RRC > 7 and RRC (= 15.
24 = Execution Halted RRC > 15 or RRC c 0.
32 = Failure Cannot read constituent list.
33 = Failure Cannot read constituent list.

38, 39, 40 = Failure No more core memory exists.
-2 w Warning An entity processed vith RRC > 1

and RRC < = 7.
-6 = Warning No entities processed with RRC =

0 or RRC - 1.

4-88

CI UM560240031U
July 1989

FUNCTION: Given an application-defined procedure, perform this procedure

on the constituents of an entity or list of entities.

FORMAT: MAECXQ(KEY1,DATARECPROCNM,KEY2,RRC,IRC)

INPUT:
KEY1 ANYKEY

Key of an entity or an application list that
is constituent(s) are to be processed.

DATAREC BLKDATA
The application-defined data structure that
is passed to the application-defined
procedure.

PROCNM ROUTINE
Application-defined procedure that processes
one entity at a time.

OUTPUT:
KEY2 LISTKEY

Key to the list of constituents that
processed with RRC = 0, 1; routine will
append to KEY2 if a valid list key.

RRC INTEGER
Return code of the application-defined
procedure.

IRC : INTEGER
Return code

DESCRIPTION: Each constituent of an entity is processed by the application-
defined procedure. Each constituent processed with RRC = 0 or
1 is added to KEY2. For an application list, entities are
processed in the direction set by previous processing or by a
call to MALSTF or MALSTR; the constituents of these entities
are processed in the forward direction only. (Each
constituent processed with RRC = 0 or 1 is added to KEY2.)
Processing halts when the application-defined procedure
returns RRC) 7 or RRC (0 after processing a constituent.

4-89

CwKotnM

CI UM560240O31U
Juy 1989

The possible return code values are:

0 = Success
17 - Failure KEY1 is not a valid entity key

or list key.
18 w Failure KEY1 is nil.
23 = Execution Halted RRC i 7 and RRC < = 15.
24 s Execution Halted RRC 15 or RRC (0.
32 = Failure Cannot read constituent list.
33 = Failure Cannot read constituent list.

38, 39, 40 = Failure No more core memory exists.
-2 a Warning An entity processed with RRC 1

and RRC t a 7.
-6 = Warning No entities processed with

RRC - 0 or RRC = 1.

4.90

CI UM560240031U
July 1989

MAEilXO

FUNCTION: Given an application-defined procedure, perform this procedure

on the users of an entity or list of entities.

FORMAT: MAEUXQ(KEY1,DATARECPROCNM,KEY2,RRC,IRC)

INPUT:
KEY1 ANYKEY

Key of an entity or an application list that

is user(s) are to be processed.

DATAREC : BLKDATA

The application-defined data structure that

passed to the application-defined procedure.

PROCNM ROUTINE
Application-defined procedure that processes
one entity at a time.

OUTPUT:
KEY2 LISTKEY

Key to the list of users that processed with

RRC = 0, 1; routine will append if given a

valid list key.

RCC INTEGER
Return code of the application-defined

procedure.

IRC : INTEGER

Return code

DESCRIPTION: Each user of an entity is processed by the application-defined

procedure. Each user processed with RRC - 0 or 1 is added to
KEY2. For an application list, entities are processed in the

direction set up by previous processing or by a call to MALSTF
or MALSTR; the users of these entities are processed in the
forward direction only. (Each user processed with RRC = 0 or

1 is added to KEY2. Processing halts when the

application-defined procedure returns RRC > 7 or RRC (0 after

processing a user.

4-91

OWFnAM

CI UM560240031U
July 1989

The possible return code values are:

0 = Success
17 = Failure KEYI is not a valid entity key

or list key.
18 = Failure KEYl is nil.
23 = Execution Halted RRC) 7 and RRC < = 15.
24 = Execution Halted RRC > 15 or RRC < 0.
32 = Failure Cannot'read constituent list.
33 -Failure Cannot read constituent list.

38, 39, 40 Failure No more core memory exists.
-2 = Warning An entity processed with RRC >1

and RRC = 7.
-6 Warning No entities processed with RRC =

0 or RRC = 1.

4-92

CI UM560240031U
July 1989

MALSRT

FUNCTION: Sort the constituents of an entity or the entities in an
application list according to an apnlication-defined algorithm.

FORMAT: MALSRT(KEYPROCNAMERRC)

INPUT:
KEY ANYKEY

The key to an entity or list of entities.

PROCNAME ROUTINE
ROUTINE(CURRENT:ENTBLOCK;

NEXT :ENTBLOCK;
FLIP :BOOLEAN;
RR :IRC);

Application-supplied routine with the above
parameter list that determines the relative
value of two entities in the input list.

OUTPUT:
RRC INTEGER

The return code.

DESCRIPTION: Given an entity or list of entities using a combination of
bubblesort and quicksort, MALSRT sends a user-defined routine
two entity ADBs. The routine returns a Boolean value
indicating true if the first ADB is greater than the second or
the second is less than or equal to the first entity.

The possible return code values are:

0 = Success
17 = Failure KEY1 is not a valid entity key

or list key.
18 = Failure KEYl is nil.
23 = Failure RR o 0.

38, 39, 40 = Failure No more core memory exists.

4-93

0wfotm

CI UM560240031U
July 1989

4.6 General Purpose Utilities

This section contains descriptions of general purpose utility routines,
as shown in Table 4-15, and the following pages.

GENERAL PURPOSE UTILITIES

DESCRIPTION ROUTINE

Get number of different KIND values in the working-form MAECTK

model.

Get KIND value stored at specific position in KIND list. MAEKND

Get actual model space used and amount of model free MASMSZ
space.

Determine the number of entities in the model of a MAKCNT
specified KIND.

4-94

oowtrn~u.

CI UM560240031U
July 1989

MAECTK

FUNCTION: Get the number of different KIND values in the working-form

model.

FORMAT: MAECTK(KNDCNT,IRC)

INPUT:
NONE

OUTPUT:
KNDCNT : INTEGER

The number of different KIND values in the
working-form model.

IRC : INTEGER
The return code.

DESCRIPTION: Get the number of KIND values in the working-form model from
the KIND list.

NOTE: Works in conjunction with MAEKND.

The possible return code values are:

0 = Success
30 = Failure No model established.

38, 39, 40 = Failure No more co-e memory; had no
constituents.

4-95

CI UM560240031U
July 1989

FUNCTION: Get KIND value at specified position in the KIND list.

FORMAT: MAEKND(KNDPOS,KNDVAL, IRC)

INPUT:
KNDPOS : INTEGER

The position in the standard array of where
to get the KIND value.

OUTPUT:
KNDVAL : INTEGER

The KIND value retrieved from the KIND list.

IRC : INTEGER
The return code.

DESCRIPTION: Get the KIND value at KNDPOS in the KIND list.

NOTE: Works in conjunction with MAECTK.

The possible return code values are:

0 = Success
30 = Failure No model established.
31 = Failure Corruptcu model.

38, 39, 40 a Failure No more core memory exists.

4-96

CI UM560240031U
July 1989

MASMSZ

FUNCTION: Determine actual model used space and model free space (in

bytes).

FORMAT: MASMSZ(MODSIZ,FRESIZ,IRC)

OUTPUT:
MODSIZ : INTEGER

The total number of bytes used by the model.

FRESIZ : INTEGER
The total number of bytes of free space.

IRC INTEGER
The return code.

DESCRIPTION: The used model space is calculated by taking the difference of
allocated model space and free model space. This routine can
only be used where the MAS memory manager is used.

The possible return code values are:

0 = Success

4-97

co1m

CI UM560240031U

July 1989

MAKCNiI

FUNCTION: Determine the number of entities in the model of a specified
KIND.

FORMAT: MAKCNT(KIND, COUNT, IRC)

INPUT:
KIND INTEGER

The KIND value for which a count is to be
determined.

OUTPUT:
COUNT : INTEGER

The number of entities in the model of the
specified KIND.

IRC : INTEGER
The return code.

DESCRIPTION: If the KIND specified is in the model, determine the number of
entities with that KIND.

The possible return code values are:

0 = Success

4-98

CI UM560240031U
July 1989

4.7 Special Purpose Utilities

This section contains descriptions of special purpose utilities, as
shown in Table 4-16, and the following pages.

SPECIAL PURPOSE UTILITIES

DESCRIPTION ROUTINE

Delete an entity or list of entities but do not consider MIDBD
delete rules.

Remove an entity from the constituent list and delete if MIDBRV

marked.

Retrieve the run-time subschema for a given entity kind. MARSGT

Create a run-time subschema for a given entity kind. HRSCR

Delete the run-time subachema for a given entity kind. NARDLT

4-99

CI UM560240031U
July 1989

FUNCTION: Delete an entity or list of entities but do not consider the
delete rules.

FORMAT: MIDBD(KEY1,RC)

INPUT:
KEYl ANYKEY

An entity or list of entities that are to be
deleted.

OUTPUT:
RC INTEGER

The return code.

DESCRIPTION: If KEYl is an entity, delete the entity. If KEY1 is a list,
then eliminate duplicate entries and delete each entity on the.
list.

The possible return code values are:

0 = Success

26 - Failure Duplicates not removed.
29 a Failure KEYI is nil or not an entity key

or a key to an application list.
32 w Failure Cannot read constituent list.
33 - Failure Cannot read constituent list.

38, 39, 40 - Failure No more core memory.
-6 a Warning The entity or list of entities

had no constituents.
-11 - Warning KEY1 had no entities to delete.

4-100

CWMN~

Cl UM60240031U
July 1989

MIDBRV

FUNCTION: Remove an entity from the constituent list or remove an entity

from a list of entities and delete if marked for delete.

FORMAT: MIDBRV(KEY,iPOS,RC)

INPUT:
KEY1 ANY Y

An entity or list of entities from which an
entity will be removed.

IPOS
The position of the key that will be removed.

OUTPUT:
RC INTEGER

The return code.

DESCRIPTION: If KEY1 is an entity, select the entity at the input position
from the constituent list of KEY1. Remove all occurrences of
it from the user list of all its users. Remove all
occurrences of it from the constituent list of KEY1. If the
entity is marked for delete, attempt to delete it.

If KEYl is a list, delete it from the position indicated. If
there was only one member in the list, the list is deleted.

The possible return code values are:

0 W Success
17 - Failure KEY1 is neither an entity or

list key.
18 - Failure KEY1 is nil
32 - Failure Cannot read constituent list.

List key.
33 - Failure Cannot read constituent list.

List key.
42 = Failure Delete rules defined incorrectly.

38, 39, 40 - Failure No more core memory exists.

4-101

C1 UM560240031U
July 1989

FUNCTION: To retrieve the run-time subschema for a given entity kind.

FORMAT: MARSGT(KIND, SCHPTR, RC)

INPUT:
KIND ORDKIND

The kind of the entity whose run-time
aubschema is to be retrieved.

SCHPTR : TSCHEMA.POINTER
Pointer to the run-time subschema.

OUTPUT:
RC INTEGER

The return code.

DESCRIPTION: Given a valid entity kind, a run-time subschema is located in
the working form.

The possible return code values are:

37 = Failure A run-time subschema has not
been established for this entity
kind.

38, 39, 40 = Failure No more core memory exists.
-1 = Warning No such kind exists.

4-102

CI UM560240031U
July 1989

MRSCR

FUNCTION: Create a run-time subschema for a given entity kind.

FORMAT: MRSCR(KIND,SCHSIZE,RTSS,RC)

INPUT:
KIND 0DUD_KI ND

The kind of the entity whose run-time
subschema is to be added.

SCH_SIZE : INTEGER
The size of the schema to be created.

RTSS TSCHEMAPOINTER
The pointer to the area containing the
run-time subschema.

OUTPUT:
RC INTEGER

The return code.

DESCRIPTION: Given a valid entity kind, a run-time subschema is added to
the working form.

The possible return code values are:

19 = Failure A run-time subschema has already
been established for this entity
kind.

38, 39, 40 = Failure No more core memory exists.
-1 = Warning No such kind exists.

No subschema is created for all failures or warnings.

4-103

oom

C1 UMS60240031U
July 1989

FUNCTION: To delete the run-time subschema for a given entity kind.

FORMAT: MARDLT(KIND,RC)

INPUT:
KIND ORD_KIND

The kind of the entity whose run-time
subschema is to be deleted.

OUTPUT:
RC INTEGER

The return code.

DESCRIPTION: Given a valid entity kind, a run-time subschema is deleted
from the working form.

The possible return code values are?

37 = Failure A run-time subschema has not
been established for this entity
kind.

38, 39, 40 = Failure No more core memory exists.
-1 = Warning No such kind exists.

4-104

CI UM560240031U
July 1989

4.8 IBM/MVS Environment

4.8.1 Compiling Considerations

The HAS may be used by any application with the appropriate constants,
types, and interface routine declarations. For PASCAL programs, these are
defined in the following INCLD file.

DSNAME = CAD5.GMAP.V33.MASINC

Member = APLTYP

NCLUEie

The types and constants used for the Model Access Software which are
contained in the INCLUDE file member APLTYP are listed below:

CONST
NULL_KEY = 0;

TYPE
ANYKEY = INTEGER;
EXTRETCODE = INTEGER;
LISTINDX - INTEGER;
LISTPSTN = INTEGER;
LISTSIZE = INTEGER;
NAMTYP = PACKED ARRAY(.I..6.) OF CHAR;
ORDKIND = INTEGER;
ROUTINE = ARRAY(.l..8.) OF CHAR;

ENTKEY * AYKEY;
LISTKEY - ANYKEY;

The INCLUDE file also contains the formal declarations for the interface
routines. The member names in the INCLUDE file are the same as the
interface routine names.

4.8.2 Considerations When Usina The XEO Routines (MAEXEO. MALXEO. MAKXEO.
MAECX0. MAEUX0. MALSRT)

If an EXECUTE routine is used, then the conventions presented in Figure
4-2 apply.

The user-written subroutine is passed as a parameter from the user
routine to the EXECUTE operation. The method by which this is done in the
multi-language environment supported by MAS is described below.

4-105

00onWW.d

CI UMS60240031U
July 1989

The name of the user subroutine is defined to the user rottine iT, PASCAL:

REF USRSUB : ROUTINE;

and in FORTRAN:

COMMON/USRSUB/USRSUB/

This allows the procedure to be passed as a parameter in a manner that
is independent of the requirements of a particular language compiler. The
EXECUTE operations correctly resolve this nonstandard linkage convention. A
PASCAL user routine should have knowledge of the user subroutine only as a
REF and not as a PROCEDURE. A PASCAL user subroutine must be declared as a
SUBPROGRAM. The BLKDATA type must appear before the INCLUDE command for the
formal declaration for the EXECUTE routine.

4.8.3 Linking Considerations

The MAS consists of PASCAL procedures declared as SUBPROGRAMS that have
been processed by the linkage editor into a single module. The references
to the PASCAL run-time support are unresolved. The module may be
incorporated into an application program by the appropriate data definition
statement and linkage editor control statements containing the following:

ddname a MASLIB
disp = SHR
duname = CAD2.GMAP.V33.LOAD

INCLUDE MASLIB(MAS)

The TEST library has PASCAL CHECKING enabled and contains aids for error
diagnosis. The PROD library has PASCAL NOCHECK and contains minimal error
diagnosis. We recommend using the TEST version during software development.

4.9 VAX/VMS Environment

4.9.1 Comilinx Considerations

The MAS may be used by application with the appropriate constants,
types, and interface routine declarations. For PASCAL programs, these are
defined in the following INC file:

directory w [GMAP.V33.MASINC]

file name - APLTYP.INC

4-106

CI UM560240031U
July 1989

INCLUDE File

The types and constants used for the Model Access Software vhich are
contained in the INCLUDE file APLTYP are listed below:

CONST
NULL_KEY = 0;

TYPE
ANYKEY = INTEGER;
EXTRET_CODE = INTEGER;
LISTINDX = INTEGER;
LISTPSTN = INTEGER;
LISTSIZE = INTEGER;
NIAMTYP - PACKED ARRAY(.l..6.) OF CHAR;
ORDKIND - INTEGER;
ROUTINE = ARRAY(.l..8.) OF CHAR;

ENTKEY = ANYKEY;
LISTKEY = ANYKEY;

The INC files also contain the formal declarations for the interface
routines. The file names for the INC files are the same as the interface
routine names.

4.9.2 Considerations When Using The XEO Routines (MAEXEO. MALXEO. MAKXEO.
MAECXO. MAEUXO. MALSRT)

If an EXECUTE routine is used, then the conventions presented in Figure
4-2 apply.

The user-written subroutine is passed as a parameter from the user
routine to the EXECUTE operation. The method by which this is done in the
multi-language environment supported by MAS is described below.

The name of the user subroutine is defined to the user routine in PASCAL:

VAR USRSUB : [EXTERNAL]ROUTINE;

and in FORTRAN:

COMMON/USRSUB/USRSUB/

This allows the procedure to be passed as a parameter in a manner that
is independent of the requirements of a particular language compiler. The
EXECUTE operations correctly resolve this nonstandard linkage convention. A
PASCAL user routine should have knowledge of the user subroutine only as an
EXTERNAL VAR and not as a PROCEDURE. The BLKDATA type must appear before
the INCLUDE for the format declaration of the EXECUTE routine.

4-107

OWuWWm

CI UM560240031U
July 1989

4.9.3 Linking Considerations

The HAS consists of PASCAL procedures that have been compiled and
inserted into an OLB/library. They may be incorporated into an application
program by the appropriate data definition statement and linker control
statement as follows:

(CMAP.V33.HASOLB]HAS3OB3J.OLB/Library

4-108

coWM~LAW

CI UM560240031U
July 1989

SECTION 5

NAME/VALUE INTERFACE

5.1 Overview

The NVI frees applications programmers from concern for the physical
location of attributes for entities in the working form of the HAS.
Applications programmers need only the attribute name and data type from the
physical schema definition to obtain the attribute value. The benefits of
the NVI include the ability to alter the physical data structure without
impacting program source code, the removal of the need to program and
maintain attribute data structures and access algorithms by the applications
programmers, and the concentration of efficiency concerns at the system
level.

The following capabilities are provided to achieve the above benefits
for various commonly used high-order application languages, application
environments, and host processors.

DIRECT QUERY/STORE SUBPROGRAMS, to be called by applications programs
that use an attribute value for a specified entity (including an
attribute for a constituent entity);

PROCEDURAL QUERY SUBPROGRAMS, to be called by applications programs that
require a list of entities that have a specified attribute value
(including an attribute for a constituent entity);

The Direct Query/Store and Procedural Query subprograms require
translation of an attribute name into a location within the ADB, according
to the physical schema definition for a particular entity KIND. A run-time
subschema entry is created for those entity KINDs that are present in the
working form when they are referred to by a call to the NVI. The run-time
subschema defines the mapping of an attribute name to the physical location
of the attribute value.

5.2 Direct Ouerv/Store

5.2.1 Function

The Direct Query function of the NVI obtains an attribute value from the
HAS working form (including an attribute of a constituent entity) for a
specified entity key and attribute name. The Direct Store function replaces
an attribute value in the HAS working form (including an attribute of a
constituent entity) for a specified entity key and attribute name. Binding

to the schema is performed at run time.

5-1

oofdWmu

CI UM560240031U
July 1989

The current implementation provides for attribute data types of integer,
real, string, logical, enumeration, pointer, and array.

The definition of the attribute is obtained from the schema at run time.
The current implementation uses either the GMAP Data Dictionary or the
Run-Time Subschema binary files produced by the GMAP Schema Manager software
as the source of schema information. The scope of the NVI is limited to the
attributes of entities that are defined in the copy of the schema definition
used by the application for processing. It is assumed that the entity
instance corresponds to the schema definition for the entity. The default
GMAP Data Dictionary includes 221 GMAP entities. It may be supplemented by
using the GIMAP Schema Manager software to add entity definitions.

The NVI functions are designed for use by programs of any of the commonly
used high-order languages (for example, the environment used for testing the
NVI subprograms is a mixture of FORTRAN and PASCAL). One of the implications
of this approach is that the application program that calls a NVI function
must provide a data area for the attribute value that is compatible with the
schema definition of the attribute (for example, the size of the data area
when dealing with string data types).

The attribute name used in a call to a NVI function is an array of
characters. The name is terminated by a null (a byte containing a hexadecimal
"00"). When the name refers to an attribute in a constituent entity, it
consists of a segment containing the name of the attribute specifying the
constituency (i.e., pointer type), followed by a segment containing the name
of the attribute in the constituent. The name segments are separated by a
period. There may be multiple segments for specifying compound constituency.
Only the last segment is terminated by a null. Trailing blanks within a
segment may be omitted.

When referring to an element within an array, or to a subarray, the name
of the attribute specifying the array is followed by open and close
parentheses. The subscript value itself is placed in the numeric array
associated with the name of the attribute. When the array is
multidimensional, commas are inserted inside the parentheses. For an
n-dimension array, there will be n-l commas to specify a single element. The
commas indicate the additional subscript values in the numeric array required
to identify the element or the subarray. When referring to the entire array,
there are no parentheses or commas.

5-2

CI UM560240031U
July 1989

5.2.2 Direct Ouery Format

NVDQAN (Entity_.Key, hameString, Subscript-Values, Attribute_Value,

Return.Code)

where the data type for:

Entity_Key is an ENTKEY (input).

NameString is a T_ATTRIBUTE_NAME; the number of characters used
depends on the attribute name (input).

SubscriptValues is a T_DIMENVALUE; the number of entries used depends

on the number of dimensions specified (input).

Attribute_Value is a TATTRIBUTEVALUE (output).

ReturnCode is an EXTRETCODE (output).

The possible return code values are:

0 = Success.

I = Failure: the entity KIND is not defined in the run-time subschema.

2 = Failure: the attribute name is not defined for the entity in the
run-time subschema.

3 = Failure: the entity key is nil (the KIND cannot be determined).

-1 = Warning: an invalid entry in the GMAP Data Dictionary was detected
during the translation of an attribute; the warning message
written to ddname = OUTPUT describes the error in detail.

An attribute value is obtained for the return codes for success (0) and
warning (-1); no attribute value is obtained for the return codes of failure
(1, 2, or 3).

5-3

~An'm 4 m

CI UM560240031U
July 1989

5.2.3 Direct Store Format

NVDSAV (EntityKey, NameString, SubscriptValues, Attribute_Value,

ReturnCode)

where the data type for:

EntityKey is an ENTKEY (input).

Name_String is a TATTRIBUTENAME; the number of characters used
depends on the attribute name (input).

SubscriptValues is a T_DIHENVALUE; the number of entries used depends
on the number of dimensions specified (input).

Attribute_Value is a TATTRIBUTEVALUE (input).

Return_Code is an EXT_RETCODE (output).

The possible return code values are:

0 = Success.

I = Failure: the entity KIND is not defined in the run-time subschema.

2 - Failure: the attribute name is not defined for the entity in the
run-time subschema.

3 = Failure: the entity key is nil (the KIND cannot be determined).

-1 = Warning: an invalid entry in the CHAP Data Dictionary was dcLected
during the translation of an attribute; the warning message
written to ddname = OUTPUT describes the error in detail.

An attribute value is replaced in the return codes for success (0) and
warning (-1); the attribute value is not replaced for the return codes for
failure (1, 2, or 3).

5.3 Procedural Ouerv

5.3.1 Function

The Procedural Query function of the NVI evaluates an input application
list of entities and creates an output application list of entities. The
output is determined by a selection criterion based on an attribute of the

5-4

CI UM560240031U
July 1989

entities in the HAS working form (including an attribute of a constituent
entity). Entities are selected based on the specified relation to the
specified value for the specified attribute name. Binding to the schema is
performed at run time.

The current implementation will evaluate attribute data types of integer,
real, string, logical, enumeration, pointer, and array.

The definition of the attribute is obtained from the schema at run time.
The current implementation uses a file in the format of the GMAP Data
Dictionary or the Run-Time Subachema binary files produced by the GMAP Schema
Manager software as the source of schema information. The scope of the NVI is
limited to the attributes of entities that are defined in the copy of the
schema definitions used by the application for processing. It is assumed that
the entity instance corresponds to the schema definition for the entity. The
default GMAP Data Dictionary includes 221 GMAP entities. It may be
supplemented by using the CHAP Schema Manager software to add entity
definitions.

The NVI functions are designed for use by programs of any of the commonly'
used high order languages (for example, the environment used for testing the
NVI subprograms is a mixture of FORTRAN and PASCAL). One of the implications
of this approach is that the application program that calls a NVI function
must specify an attribute value that is compatible with the schema definition
of the attribute (for example, the size of the data area when dealing with
string data types).

The attribute name used in a call to a NVI function is an array of
characters. The name is terminated by a null (a byte containing a hexadecimal
"00"). When the name refers to an attribute in a constituent entity, it
consists of a segment containing the name of the attribute specifying the
constituency (i.e., pointer type), followed by a segment containing the name
of the attribute in the constituent. The name segments are separated by a
period. There may be multiple segments for specifying compound constituency.
Only the last segment is terminated by a null. Trailing blanks within a
segment may be omitted.

When referring to an element within an array, or to a subarray, the name
of the attribute specifying the array is followed by open and close
parentheses. The subscript value itself is placed in the numeric array
associated with the name of the attribute. When tle array is
multidimensional, commas are inserted inside the parentheses. For an
n-dimension array there will be n-l commas to specify a single element. The
commas indicate the additional subscript values in the numeric array required
to identify the element or the subarray. When referring to the entire array,
there are no parentheses or commas.

5-5

COMMO

CI UM560240031U
July 1989

5.3.2 Format

NVPQAV (CandidateList, NameString, AttributeValue, Subscriptyalues,
ComparisonOperator, SelectedList, Return-Code)

where the data type for:

CandidateList is a LISTKEY (input).

NameString is a T_ATTRIBUTE_NAME; the number of characters used
depends on the attribute name (input).

AttributeValue is a TATTRIBUTEVALUE (input).

Subscript-Values is a T_DIMENVALUE; the number of entries used
depends on the number of dimensions specified (input).

Comparison.Operator is an INTEGER (input). The possible values are:

1 = Attribute value equal

2 = Attribute value less than

3 = Attribute value greater than

4 = Attribute value not equal

5 = Attribute value less than or equal

6 = Attribute value greater than or equal

SelectedList is a LISTKEY (output).

ReturnCode is an EXTRETCODE (output).

The possible return code values are:

0 = Success.

1 = Failure: the entity KIND is not defined in the run-time subschema.

2 = Failure: the attribute name is not defined for the entity in the
run-time subschema.

5-6

CI UMS60240031U
July 1989

4 = Failure: the call to HAS routine MAEXEQ failed.

5 = Failure: the call to HAS routine HAL failed.

-1 = Warning: an invalid entry in the CHAP Data Dictionary was detected

during the translation of an attribute; the warning message

written to ddname = OUTPUT describes the error in detail.

A valid list of entity instances is obtained for the return codes for

success (0) and yarning (-1); no valid list of entity instances is obtained

for the return codes of failure (1, 2, 4, or 5).

5.4 iliti

5.4.1 Functio

The utility routines allow an application program to query the entity

definitions at run-time. This is not normally necessary, but might be done
during development testing, or if entity definitions are frequently changed,
as a part of the one-time initialization for the application.

The first utility routine, NVGTAT, obtains the data type for a specified
attribute. The attribute is identified by its name and the KIND number of the
entity. If the attribute data type is INTEGER, REAL, or STRING, the size for
the data type is also returned. If the attribute data type is POINTER, the
constituent list position is also returned. The attribute name is an array of
characters terminated by a null (a byte containing a hexadecimal "00").
Trailing blanks may be omitted.

The second utility routine, NVCTED, obtains (only from the Data Dictionary
form of the entity definitions) the size of an entity's Application Data Block

(ADB) and the length of its Constituent List (CL). The entity is identified
by its name. The entity name is an array of characters terminated by a null
(a byte containing a hexadecimal "00"). Trailing blanks may be omitted.

5.4.2 Attribute Data Type Query Format

NVGTAT (EntityKind, AttributeName, Data_Type, Size, ReturnCode)

where the data type for:

EntityKind is an INTEGER; the KIND number of the entity
containing the attribute definition to be queried
(input).

AttributeName is a TATTRIBUTE_NAME; the number of characters used
depends on the attribute name (input).

5-7

oowo~

CI UM560240031U
July 1989

DataType is a T_DATA.TYPE; an enumerated scalar indicating the
attribute data type (output).

Size is an INTEGER; the size for INTEGER, REAL, or STRING
data types; the constituent list position for the
POINTER data type; no meaning for ARRAY, LIST, SET,
LOGICAL, or ENUMERATION data types (output).

Return-Code is an INTEGER (output).

The possible return code values are:

0 = Success

1 = Failure: the entity KIND is not defined in the run-time subschema

2 = Failure: the attribute name is not defined for the entity in the
run-time subschema

The attribute DataType and Size are obtained for the return code of
success (0); neither is obtained for the return codes of failure (1 or 2).

5.4.3 Entity Size Ouerv Format

NVGTED (EntityName, EntityKind, ADBSize, CLLength, Return_Code)

where the data type for:

Entityjame is a T_ATTRIBUTENAME; the number of characters used depends
on the entity name (input).

Entity_Kind is an ORD_KIND (output).

ADBSize is an INTEGER (output).

CL_Length is an INTEGER (output).

ReturnCode is an EXT_RET_CODE (output).

The possible return code values are:

0 w Success

1 - Failure: the entity name is not defined in the run-time subschema

The EntityKind, ADBSize, and CLLength are obtained for the return code
of success (0); none of them are obtained for the return code of failure (1).

5-800 " w E N W E

CI UM560240031U
July 1989

5.5 IBM/MVS Environment

5.5.1 Compiling Considerations

The NVI may be used by an application program with the appropriate
constants and types. For PASCAL programs, these are defined in the following
INCLUDE files:

dsname = CAD5.GMAP.V33.NVIINC

member = APPLTYP

dsname = CAD5.GMAP.MASINC

member = APLTYP

5.5.2 Include Files

The types and constants used for the NVI which are contained in the NVI
incl ;Ie file member APPLTYP or the MAS include file member APLTYP are
summarized below:

Const
END_OF_STRING = /00'XC;
MAX_ATTRIBUTE_NAME = 1000;
MAXDIMENSIONS a 100;
MAXENUMERATION - 16;
MAX_FIXEDSTRING - 132;
MAXVARIANT_VALUE - 1000;

Type
ANYKEY = INTEGER;
EXTRET_CODE = INTEGER;
ORD-KIND - INTEGER;
T_-ATTRIBUTE_NAME - ARRAY(. 1..MAX_ATTRIBUTENAME .) OF CHAR;
T_DATA_TYPE = (INTEGERDT, REALDT, STRINGDT, LOGICALDT,

ENUPLDT, PNTRDT, ARRAYDT);
TDIMENVALUE = ARRAY(. 1..MAXDIMENSIONS .) OF INTEGER;
T_ENUMERATION - PACKED ARRAY(. 1..MAX_ENUMERATION .) OF CHAR;
T_-FIXEDSTRING = PACKED ARIAY(. i..MAXFIXEDSTRING .) OF CHAR;
TINTEGERI - PACKED -128..127;
T_INTEGER_2 - PACKED -32768..32767;
TVARIANTVALUE - ARRAYC. 1..MAXVARIANTVALUE .) OF CHAR;

5-9

oowuo

CI UM60240031U
July 1989

ENTKEY = ANYKEY;
LISTKEY = ANYKEY;

T_ATTRIBUTEVALUE = RECORD
CASE INTEGER OF

0 : (ASYARIANT : Tvariant_value);
1 : (ASINTEGER_1 : T_Integer_1
2 : (ASINTEGER_.2 : TInteger_2
3 : (AS_INTEGER_4 : Integer
4 : (ASREAL_4 : SHORTREAL
5 : (AS_REAL_8 : REAL
6 : (ASFIXED_STRING : T_.FIXED_STRING);
7 : (ASLOGICAL BOOLEAN
8 : (ASENUMERATION : TNUXERTION);
9 : (ASENTKEY : ENI7)

END

The NVI INCLUDE file also contains the formal declarations for the
interface routines. The member names in the INCLUDE file are the same as the
interface routine names.

5.5.3 Linkaze Considerations

The NVI consists of subprograms that have been processed by the linkage
editor into a single module. The subprograms may be incorporated into an
application program by the appropriate data definition statement and linkage
editor control statement containing the following:

ddname = NVILIB
disp a SHR
dsname = CAD2.GMAP.V33.LOAD

ddname = MASLIB
disp - SHR
daname - CAD2.CMAP.V33.LOAD

INCLUDE NVILIB(RVI)
INCLUDE MASLIB(MAS)

5.5.4 Processing Considerations

The NVI will automatically retrieve run-time subschema definitions from
one of two possible sources: the GMAP Data Dictionary files, or the run-time
Subschema binary files. The source to be used will be determined at the time
the NVILIB was installed.

5-10

lw ~ lilom nl m m m. . .m I iemm
- D -

CI UM60240031U
July 1989

The files for the Data Dictionary are specified by:

ddname = DDINX
disp w SHR
dsname = CAD5.GHAP.V33.DDINDX.DATA

ddname = DDFILE
disp = SHR
dsname = CAD5.GMAP.V33.DDDEFN.DATA

The files for the Run-Time Subschema are specified by:

ddname = INXFILE
disp = SHR
dsname - CADS.GMAP.V33.RTSI

ddname = DATAFILE
disp = SHR
dsname = CAD5.GMAP.V33.RTSD

If any messages occur during the translation from the GAP Data Dictionary
format and conventions to the run-time subschema format and conventions, they
are written to:

ddname = OUTPUT
lrecl - 133
recfm = A

The active portion of the run-time subschema is stored in the working form
and, therefore, consumes memory. The amount for each entity KIND is:

48 bytes, plus
28 bytes * the number of attributes for the entity, plus
8 bytes * the number of attributes of enumeration data type, plus
16 bytes * the number of possible enumeration values, plus
8 bytes * the number of attributes of array data type, plus
8 bytes * the number of array dimensions, plus
8 bytes * the number of attributes of constituent reference data type,
plus

4 bytes * the number of possible kinds for the constituent references.

The working form contains entries only for the KINDs of the entity
instances that are specified in calls to the NVI.

5-11

CI UM560240031U
July 1989

5.6 VAX/VMS Environment

5.6.1 Compiling Considerations

The NVI may be used by an application program with the appropriate
constants and types. For PASCAL programs, these are defined in the following

INC files:

directory - [GMAP.V33.MASINC]

file name = APLTYP

directory [GMAP.V33.NVIINC]

file name a APPLTYP

5.6.2 Include Files

The types and constants used for the NVI which are contained in the NVI
include file APPLTYP or the MAS include file APLTYP ARE SUMMARIZED BELOW:

Const
MAX.ATTRIBUTE_NAME = 1000;
MAX-DIMENSIONS = 100;
MAXENUMERATION = 16;
MAXFIXED_STRING - 132;
MAX-VARIANTVALUE = 1000;

Type
ANYKEY - INTEGER;
EXTRETCODE - INTEGER;
ORDKIND - INTEGER;
T-ATTRIBUTENAME - ARRAY(. 1..MAXATTRIBUTE_NAME .) OF CHAR;
T_DATA_TYPE - (INTEGERDT, REALDT, STRING-VT, LOGICALDT,

ENUKDT, PNTR_.DT, ARRAYDT);
T_DIMEN_VALUE - ARRAY(. 1..MAX_DIMENSIONS .) OF INTEGER;
TENUMERATION - PACKED ARRAY(. l..MAXENUMERATION .) OF CHAR;
T_FIXEDSTRING - PACKED ARRAY(. 1..MAXFIXED_STRING .) OF CHAR;
T_INTEGER_ - (BYTE] -128..127;
TINTEGER_2 - (WORD] -32768..32767;
T_VARIANT_VALUE - ARRAY(. I..MAXYARIANT_VALUE .) OF CHAR;

(C -)

ENTKEY = ANYKEY;
LISTKEY = ANIYKEY;

TATTRIBUTEVALUE = RECORD

5-12

CI UM560240031U
July 1989

CASE INTEGER OF
0 (AS-VARIANT : T_variantvalue);
1 : (AS_INTEGER_1 : TInteger_l
2 (ASINTEGER_2 : TInteger_2 ;
3 : ASINTEGER_4 : Integer
4 : (ASREAL_4 : REAL
5: (ASREAL_8 : DOUBLE
6 : (ASFIXED_STRING : T_FIXEDSTRING);
7 : (ASLOGICAL : BOOLEAN
8 (ASENUMERATION : TENUMERATION);
9 (ASENTKEY : ENTKEY

END

Var
ENDOFSTRING : [UNSAFE] CHAR : = %X/00';

The formal declarations for the interface routines are also contained in
the NVI include files named for the routines.

An application program needs to open a file for reading the GMAP Data
Dictionary as follows:

Open (FileVariable := DDFILE, History := READONLY, AccessMethod := DIRECT,
File-Name := /[GMAP.V33.DDFILS]GMAPDDD.DAT', Error := MESSAGE);

Open (FileVariable := DDINX, History := READONLY,
FileName := '[GMAP.V33.DDFILS]GMAPDDI.DAT', Error := MESSAGE);

For PASCAL programs, these local variables need to be declared as follows:

VAR
DDFILE : [Common]TEXT;
DDINX : [Common]TEXT;

5.6.3 Linkage Considerations

The NVI consists of subprograms that have been compiled and inserted into
an OLB/Library. The subprograms may be incorporated into an application
program by the appropriate data definition statement and a linker control
statement containing the following:

[GMAP.V33.NVIOLB]NVIOBJ.OLB/Library

(GMAP.V33.MASOLB]MAS30BJ.OLB/Library

5-13

cOwMW=

CI UM560240031U
July 1989

5.6.4 Processing Considerations

The NVI will automatically retrieve run-time subschema definitions from
the GMAP Data Dictionary files.

5-14

OWMQ" O

CI UM560240031U
July 1989

AZNDIX A

MODEL ACCESS SOFTWARE (MAS) CALLING PARAMETER TYPE INDEX

Routine Calling Seguence

MABRST (ext-.ret..code)
MACPDT (anykey, namtyp, integer, ext_ret_code)
MAEA (anykey, ext_ret_code)
MAEAI (anykey, ext_ret_code)
MAE AV (entkey, integer, ext_ret-code)
MaEc (anykey, listkey, ext._ret_code)
MAECI (anykey, liatkey, ext_ret_code)
MAECIK (anykey, ord-kind, listkey, ext..ret...code)
MAECMP (entkey, listkey, ext_ret_code)
MAECQY (entkey, entkey, integer, ext-ret_code)
MAECR (entblock, anylcey, entkey, extretcode)
MAECRi (entdata, axiykey, entkey, integer, ext_ret_code)
MAECTK (integer, ext_ret_code)
MAECXQ (anykey, blkdata, routine, listkey, ext_retcode,

ext-ret code)
MAED (anykey, listkey, ext_ret_code)
MAE DI (anykey, liatkey, ext_ret_code)
MAEDT (anykey, listkey, listkey, ext_ret_code)
MAEDTI (anylcey, listkey, listkey, ext_ret_code)
MAE GIN (entkey, integer, ext_ret_code)
MAAEGTK (entkey, entblock, ext_ret..code)
MAEKND (integer, ordjcind, ext-.retcode)
MAERST (neamtyp, ext_ret-code)
MAESCI (anykey, integer ext_ret_code)
MAESVL (entkey, integer, ext_ret_code)
MAESWA (ext_ret_code)
MAESWT (anykey, integer, ext..ret..code)
MAE U (anykey, liatkey, ext_ret_code)
MAEUD (entkey, entblock, ext...retcode)
MAE UI (anykey, liatkey, ext_ret_code)
MAEUIK (anykey, ordjcind, listkey, ext..ret..code)
MAE USR (entkey, integer, ext_ret_code)
MAEUXQ (anykey, blkdata, routine, listkey, extret~code,

extret code)
MAEXEQ (anykey, blkdata, routine, ext..ret-code, ext_ret-code)
MAINIT (ext_ret_code)
MAICCNT (integer, integer, ext~ret~code)
MAKILL (extret code)
KAKXEQ (anykey, variant, entry point, Integer,

integer)

A-1

C! UMS60240031U

July 1989

APENIX A (contd.)

Routine Calling Seauence

MAL (listkey, ext-ret-code)
MALAND (anykey, anykey, listkey, ext_ret-code)
MALATC (ariykey, anykey, ext_ret_code)
HALCPY (listkey, listkey, ext_ret_code)
MALD (listkey, ext_ret-code)
MALDA (ext_ret_code)
HALDI (anykey, ext_ret_code)
MALFND (anykey, entkey, integer, integer, extret.code)
MALGTK (anykey, integer, entkey, ext_ret_code)
HALINS (anykey, anykey, integer, ext_ret_code)
MALK (ordjcind, listkey, extjretcode)
MALKC (anykey, ord__Xnd, listkey, ext_ret_code)
MAL (anykey, ord..kind, listkey, ext_ret_code)
MALKU (anykey, ordjdnd, listkey, ext_ret_code)
MALN (integer, listkey, ext-ret_code)
MALNO (anykey, integer, ext_ret_code)
HALNOT (anykey, enykey, listkey, ext_retcode)
MALOCK (listkey, integer, ext_ret_code)
MALOR (anykey, anykey, listkey, ext-ret_code)
MALRD (anykey, entkey, ext_ret_code)
MALRDE (liatkey, ext..yet~code)
MALEEP (anykey, anykey, ext_ret_code)
MALRMV (anykey, integer, ext_ret_code)
MALROR (anykey, ext_ret_code)
MALRPL (anykey, entkey, Integer, ext_ret_code)
MALRRI (anykey, ext_ret_code)
(MALRORI)
MALRST (listkey, integer)
HALRVS (anykey, ext..retceode)
MALSRT (anykey, routine, extret.code)
MALSTF (anykey, ext_ret_code)
MALSTR (anykey, ext..ret..code)
HALXEQ (anykey, blkdata, routine, listkey, ext_ret_code,

ext_ret..code)
MAQURY (entkey, namtyp, integer, ext..ret..code)
MARDLT (ord..kind, integer)
MARSGT (ord..kind, T....cheza-.pointer, integer)
HASMSZ (integer, integer, ext_ret_code)
MAUPDT (anykey, namtyp, Integer, extret..code)
MIDBD (anykey, integer)
MIDBRV (anykey, position, integer)
MRSCR (ordkind, integer, T..schea..pointer, integer)

A-2

CI UM560240031U
July 1989

APPENDIX B

ALPHABETICAL MODEL ACCESS SOFTWARE (HAS) ROUTINE INDEX

Routine Description

MABRST Reset process and application flags

NACPDT Update Constituent SYSUSE flag
MAEA Activate an entity or list of entities
MAEAI Activate an entity or list of entities Inclusively

.MAEAV Find value of entity activation setting
, ?AEC Create list of constituents
MAECI Create list of inclusive constituents
* ACIK Create list of inclusive constituents by kind
MAECMP Create a list of constituents that compress
MAECQY Determine if user compresses a constituent
MAECR Create an entity
MAECRN Create entity with constituent list size
HAECTK Get number of different kinds in vorking-form model
M HAECXQ Process constituents via an application defined

procedure
*AED Delete an entity or list of entities
MA EDI Delete an entity or list of entities inclusively
MAEDT Delete test an entity or list of entities

SMAEDTI Delete test an entity or list of entities inclusively
MAEGKN Get kind value of an entity
MAEGTK Get entity ADB
MAEKND Get kind value at specified position in kind list

* MAERST Set application flag in all entities in model to "off"
MAESCI Set or reset process flag for inclusive constituents
MAESVL Find binary switch setting of an entity

* MAESWA Set all entities binary switch setting to "off"
MAESWT Set binary switch in an entity or list of entities
MAEU Create list of users
MAEUD Update entity ADB
, AEUI Create list of users inclusively
MAEUIK Create list of users inclusively by kind
M ?AEUSR Determine if an entity has any users

, MAEUXQ Process users via an application defined procedure
SMAEXEQ Execute procedure on an entity or list of entities
• MAINIT Initialize the vorking-form model
* MAKCNT Determine number of entities in model with specified kind
MAKILL Delete the current working-form model

0 MAKXEQ Execute procedure on all entities of specified kind
SMAL Create an empty list
* MALAND "And" of two list

B-1

I co~vmm

CI UM560240031U
July 1989

APPENDIX B (contd.)

Routine Descriotion

, HALATC Attach entity or list of entities to entity or list
* MALCPY Make a copy of a list
* MALD Delete a list
M MALDA Delete all lists in the working-form model

' MALDI Delete a list and all lists after it
, HALFND Find position of an entity in a list

K MALGTK Get the Nth entity from a list
MALINS Insert entity or list of entities into a list

• HALK Create list of an entities of specified kind
* MALKC Create list of entities of a kind from constituents of

another list
.NALKL Create list of an entities of specified kind which

are found within another list
*ALKU Create list of entities of a kind from users of another

list
*ALN Create an empty list of specified size
MALNO Count entities in a list
M HALNOT "Not" of two lists
M MALOCK Set the list lock flag

* MALOR "Or" of two lists
-NALRD Read next entry in list
•ALEDE Remove duplicate entities from list
MALREP Replace list of entities
MALRMV Remove entity or list of entities
M MALROR Sort entities in direct user to constituent order
,MALRPL Replace entity or list of entities
'MALRRI Sort entities in inclusive user to constituent order
HALRST Reset an application list
*ALRVS Reverse the order of a list

. HALSRT Sort entities via an application defined procedure
, HALSTF Set flag to read in forward direction
HALSTR Set flag to read in reverse direction
MALXQ Execute procedure on entity or list of entities
MAQURY Determine value of application flag for given entity
MARDLT Delete the run-time schema for a given entity kind
M MARSGT Retrieve the run-time subachema for a given entity kind

* MASMSZ Find actual model used space and model free space
M NAUPDT Update value of application flag of entity or

list of entities
MIDBD Delete an entity or list of entities, but do not

consider the delete rules

B-2

1- _t~

CI UM560240031U
July 1989

APPENDIX B (contd.)

Routine Descriotion

MIDBRV Remove an entity from the constituent list or remove
an entity from a list of entities. Delete if marked
for delete.

MRSCR Create a run-time subschema for a given entity kind

B-3

mJ m OWN

CI UM560240031U
July 1989

APENDfIX~

MODEL ACCESS SOFTWARE (HAS) RETURN CODE INDEX

ErrortyvgCode

NOERRORS_ DETECTED 0
BADENT_KIND 1
IINVALID_CREATE 2
CANT_CREATE_LIST 3
MAS_INITFAILED 4
INVALIDUPDATE 5
CANT_UPDATE-_ENT 6
CANT_CREATE_ENT 7
CANT_VERIFY_CONNECT 8
INVALIDCONNECTION 9
CANTCONNECT 10
ABSENT_INPUT 11
INVALIDGET 12
lIDSOPCOMPLETE 13
BADJ.LISTPOSITION 14
MAXIMUM_.LIST_SIZE 15
BADLIST_MOVECOUNT 16
BADLISTREFERENCE 17
BADENT_.KEY 18
DUPLICATESCH 19
DUMPERROR 20
BAD_ENT_SIZE 21
BADSCH..KIND 22
PROC_CODE_ERROR 23
PROC_OUTOFRANGE 24
NOIATCH_FOUND 25
DUPSNOTREMOVED 26
INVALID..DELETE 27
BAD_ENTITY_-ON_USER_LIST 28
BADDELETE KEY 29
EMPTYMO DEL 30
ARGOUTOFRANGE 31
INVALIDCRB POSITION 32
CRB_.ENTRYNOT-FOUND 33
INVALI DLACJNAME 34
CANTIARKENTITYDELETE 35
SI ZENOTCAREENOUGH 36
RTSNOT_ NORING..FORM 37
CORENOT AVAILABLE 38
NOT ENOUGHCOREFOR -INIT 39
ABSOLUTELYNOMORECORE 40

C-1

Cl UM560240031U
July 1989

,&PENDfIX.C (contd.)

ErrortypeCode

MAINITALREADY_-DONE 41
ROLE...DOESNOTMATCH 42
ENTITYNOTJOUNDLI ST 43

C-2

CONTROWS

Cl UM60240031U
July 1989

APPENDIX C (contd.)

MODEL ACCESS SOFTMARE RETURN CODE INDEX

Warning type Code

0KW 0
NO_.SUCH..SCH -1
PROC_-WARNINGCODE -2
EMPTY._DELETELIST -3
E14PTY_EXCEPTIONLIST -4
END_OF_LIST -5
NQ..LIST_CREATED -6
EN4PTYMIRK_LIST -7
NO..LIST..GIVEN -11

C-.3

cabl'ootow

Cl UM560240031U
July 1989

APPNDIX D

GENERAL TECHNIQUES/GUIDELINES

o Avoid creating long lists of entities:
-Lists are processed sequentially
-Lists use model space

o Do not use ENTKEY as a memory address:
-ENTKEY does not address the attribute data block of the entity

o Avoid "nil" keys:
-Abend or nil pointer checking errors may be caused

o Delete application lists when no longer needed:
-Application lists use memory
-Application lists slow deletion of entities

o Always test the Model Access Software (HAS) interface return code:
-RC = 0 normal return
-RC (0 warning message
-RC) 0 critical error

o Reset the process bit to "off" when it is no longer needed.

o Define the KIND and LENGTH fields in the ADB.

o When MALRD is used in conjunction with one of the following interface

routines:

MAED MALINS
MAEDI MALRMV
MAL

the position of sequential reading is incremented/decremented if an

interface function modifies the list.

Do not use MALGTK and one of the above routines because the local
variable position cannot be adjusted by the MAS package.

D-i

i m n mm m mm mm •m Nmmm mm mmM

CI UM560240031U
July 1989

APEPXD(contd.)

For example:

VAR NUM_IN_LIST: = INTEGER

BEGIN

FOR I a 1 TO NUK_IN_LIST DO

MALCTK (LISTKEY, NUM_INLIST, EITIEY1):

MAED (ENTKEY1, LISTX):

END:

As each entity is deleted, it is removed from the LISTKEY list, but
I is not adjusted.

o With the exception of MAL and MALK, empty lists will not be created. If
an interface function has an output LISTKEY and the list is empty, the
list will not be created and the LISTKEY will be NIL. A warning return
code will indicate this situation.

D-2

owntmm

C! UM560240031U
July 1989

APPENDIX E

RUN-TIME ENVIRONMENT

INTRODUCTION

The Model Access Software (MAS) consists of a set of PASCAL procedures
that provides an interface to the working form model for application
programs. When the application programs are written in a language other
than PASCAL, the run-time environment must satisfy the interlanguage
communication requirements of all the languages involved. This appendix
discusses the HAS interlanguage environment conventions and the composition
of the PASCAL dynamic storage areas. Examples are given for a FORTRAN
program that uses HAS routines.

INTERLANGUAGE CONVENTIONS

When the HAS subprograms were compiled, they were defined as PROCEDUREs
using SUBPROGRAM declarations. The subprogram declaration is an extension
to IBM Pascal that allows a PASCAL procedure to be called from any
language. The subprogram declaration supplies special code at compile
time. At run-time, this code determines the nature of the calling program.
For non-PASCAL calls, two macros are invoked: Prolog and Epilog. Before
the procedure executes, Prolog locates the PASCAL Communication Work Area
(PCWA) as well as the main and local Dynamic Storage Areas (DSA) and
establishes the PASCAL register conventions. On exit, the Epilog macro
restores the register conventions of the calling program.

The effect of this method is that no special action is required by the
calling program, rigardless of its language.

The SUBPROGRAM declaration may also be applied to application
procedures, which may then be called from, and make calls to, routines of
any language. This method is limited to PASCAL PROCEDURES and does not
apply to PASCAL FUNCTIONS.

ESTABLISHING INTERLANGUAGE ENVIROMENT

The preferred (and easiest) approach is to insert the entire application
into a PASCAL program. This method, shown in Figure E-l, assures correct
error handling.

E-!

iwniov

CI UM560240031U
July 1989

PASCAL

FORTRAN

FORTRAN

Figure E-1. PASCAL Environment

An alternate approach, illustrated in Figure E-2, is to insert the
portion of the application that makes the HAS calls into a PASCAL procedure
that is declared MAIN. The error handling capability, however, may be
limited in this method. Note that the model created within the scope of the
MAIN PASCAL procedure is active only during the execution of the MAIN
procedure; new models may be created in subsequent calls to a similarly
declared MAIN procedure. Upon termination of the last call to a PASCAL
MAIN, the procedure PSCIBX should be called to terminate the PASCAL run-time
environment.

Examples of the PASCAL source and link-edit instructions are included at
the end of this appendix. Figure E-3 illustrates the PASCAL dynamic storage
area stack.

E-2

ownmdm

C1 UM560240031U
July 1989

FORTRAN

MAIN

FORTRAN

MAS

FORTRANJ

PSCLHX

Figure E-2. MAIN Procedure

E-3

CI UM560240031U
July 1989

REGISTER CONVENTIONS

The interlanguage environment establishes the correct register
conventions automatically. The following information is included for use
from the IBM TEST mode.

Register PASCAL Non-PASCAL

15 Branch address Branch address
14 Return address Return address
13 Local DSA address (1) Save area address
12 PCWA address
11 Main DSA address
1 Address of parameter Address of parameter

list (2) (3) list
0 (2) Function value

NOTES: (1) The save area is the first entry in the local DSA, which is
established by a PASCAL caller.

(2) The function value for PASCAL is referred to by the first
entry in the parameter list. PASCAL input parameters for a
function are referred to as starting with the second entry in
the parameter list.

(3) The parameter list contains addresses of parameters except for
pass-by-value of scalars, pointers, or sets, in which case the
parameter list contains the actual value.

PASCAL DYNAMIC STORAGE AREA

The dynamic storage area of the PASCAL main program contains global
variables (including any commons). Each PASCAL procedure invoked has a
local dynamic storage area containing local variables. The dynamic storage
areas are contained in a LIFO stack.

In general, the DSA of a routine consists of five sections:

(1) The local save area (144).

(2) Parameters passed in by the caller.

(3) Local variables required by the routine.

(4) A save area required by any routine that will be called.

(5) Storage for the largest parameter list to be built for a call.

E-4

CI UM560240031U
July 1989

Sections I and 2 are allocated by the calling routine; Sections 3, 4,
and 5 are allocated by the Prolog of the called routine.

Every DSA is at least 144 bytes long. This is the storage required by
PASCAL/VS for a save area. The local variables and parameters of the
routine are mapped within the DSA starting at offset 144.

Upon entering a routine, Register 1 points 144 bytes into the DSA of the
routine, which is where the parameters passed in by the caller reside.

Upon invocation, Register 13 points to the base of the DSA of the
caller, which is where the save area of the caller is located. Figure E-3
illustrates the condition of the stack and relevant registers immediately
upon the-start of the routine.

REG 13 - Start of DSA of CallerCaller's Save Area

Caller's Local

To Replace REG 13 - Variables Start of DSA

Local Save Area of Routine
(144 Bes)

REG 1 -- 4-- 144 Bytes Into DSA
Parameters

Top of Stock -- - - Storage Not Yet

Local Variables To Be Aacated

Save Area of Any Start of D
Routines Yet To Be CalledTo Be Invoked

REG 1 Set Here for Calls --- I---e-- 144 Bytes Into This DSA
Parameter List To Be

Built for Calls
to Other Routines

Next Stock Top ----- -- _-

Figure E-3. PASCAL Zynamic Storage Area Stack

E-5

CI UM560240031U
July 1989

EXAMPLES

EXAMPLE 1: PASCAL PROGRAM (PASMAIN) THAT INVOKES FORTRAN MAIN

PASCAL PROGRA
PROGRAM PASMAIN;
PROCEDURE MAIN; FORTRAN;
BEGIN
MAIN; Invoke FORTRAN main.
END.

LINKEDIT INSTRUCTIONS
INCLUDE APLLIB(PASMAIN)
INCLUDE APLLIB(APL) FORTRAN main object,

list of objects including FORTRAN main, or

LOAD module including FORTRAN main.
INCLUDE MASLIB(MAS)
ENTRY PASMAIN

where SYSLIB allocation includes SYS1.PASCLIB.

EXAMPLE 2: PASCAL PROCEDURE (PASSUB) INVOKED BY FORTRAN MAIN THAT INVOKES
FORTRAN SUBROUTINE (FORSUB)

PASCAL PROCEDURE
SEGMENT PASSUB;
PROCEDURE PASSUB (....);MAIN; FORTRAN MAIN may pass parameters to

the PASCAL subroutine.

PROCEDURE PASSUB;
PROCEDURE FORSUB(....);FORTRAN; PASCAL MAIN may pass parameters to the

FORTRAN MAIN.
BEGIN
FORSUB(....); Invokes FORTRAN subroutine that calls

AS.
end;

FORTRAN MAIN PROGRAM

CALL PASSUB(....)
CALL PSCLHX

E-6

CI UM560240031U
July 1989

LINKEDIT INSTRUCTIONS

INCLUDE APLLIB(APL) List of objects including FORTRAN MAIN
or LOAD module including FORTRAN MAIN.

INCLUDE APLLIB(PASSUB)
INCLUDE MASLIB(MAS)
ENTRY APL
NAME APL

where SYSLIB allocation includes SYS1.PASCLIB.

E-7

COwovm

CI UM560240031U
July 1989

APPENDIX F

SAMPLE PROGRAMS

INTRODUCTION

A series of sample programs, presented in Table F-i, were written by an
MDC development programmer to emulate the MDC CAD system. They are
reprinted here in hopes that other programmers can gain insight into the
easiest and most efficient way to use each of the Model Access Software
routines.

The routine descriptions in the earlier parts of this manual are
cross-referenced to the sample 2rogram in which the Model Access Software
routine is used (routines are all written in PASCAL):

SAMPLE PROGRAMS

HAS APPLICATION
DESCRIPTION ROUTINES ROUTINE

USED

Defines System Type and Constant Declarations. ENTTYP

Entity Type Definitions. ENTDEF

Model a Line for Display. MAL,MALATC, MODLN

MAECR

Retrieve Entity's Type, Special Code, and Label. MAEGTK CADENT

Retrieve Entity Key and Data from Pick List. MALNO, PLQRY
MALGTK

P-I

WrmL

CI UM560240031U
July 1989

TABL F1 (contd.)

Implement Delayed "Delete" Operation. MAEGTK, RMBLK
MAECI,

MALNO,MAEU,
ALGTK

Reject Changes to Attributes. MAECR,MAL, VCASAV
MALATC

Checks if the KIND is between a high and a low MALXEQ KNDRNG
boun-..ary.

Retrieves the radius of a PRS. MAEXEQ R$RCRD

F-2

CI UM560240031U
July 1989

ENTTYP SAMPLE PROGRAM

ENTTYPE - Sample program defines system type and constant declarations.

TYPE
UNSIGNEDINTl = PACKED 0..255;
SIGNEDINTI = PACKED -128..127;
UNSIGNEDINT2 = PACKED 0..65535;
SIGNED-INT2 = PACKED -32768..32767;
COORD = (X,Y,Z);
VECTOR = ARRAY(.COORD.) OF REAL;
SHITVECTOR = ARRAY(.COORD.) OF SHORTREAL;
TWO_PNTS = ARRAY(.1..2.) OF VECTOR;

INT2 = ARRAY(.1..2.) OF INTEGER;
INT3 = ARRAY(.1..3.) OF INTEGER;
INT4 = ARRAY(.1..4.) OF INTEGER;

SHTREAL2 = ARRAY(.1..2.) OF SHORTREAL;
SHTREAL3 = ARRAY(.1..3.) OF SHORTREAL;

REAL2 = ARRAY(.l..2.) OF REAL;
REAL3 = ARRAY(.1..3.) OF REAL;

CHAR2 = PACKED ARRAY(.1..2.) OF CHAR;
CHAR4 = PACKED ARRAY(.l..4.) OF CHAR;
CHAR6 = PACKED ARRAY(.1..6.) OF CHAR;
CHAR8 = PACKED ARRAY(.l..8.) OF CHAR;

PDDI Access SoftwareENTITY,_TYPE = INTEGER;
CADD ENTITY TYPE = INTEGER;
DATATYPE = INTEGER;

F-3

CI UM560240031U
July 1989

ENTDEF SAMPLE PROGRAM

ENTDEF - Sample program shows entity type definitions.

TYPE
ANYKEY = INTEGER;
LISTKEY = ANYKEY;
ENTKEY = ANYKEY;
EXT_RET_CODE = INTEGER;
ENTKIND = INTEGER;
ORDKIND = INTEGER;

TSYS = (CADD, IDBPDDI Access Software);

T_HEADER = RECORD
KIND : ENTKIND;
SIZE : 0..4194303;
LABEL : CHARS; --) OVER
DSP_TYPE : INTEGER;
SUBTYPE : INTEGER;
VERSION : INTEGER;

END;

ENTITY DATA RECORDS

PNTDATA = RECORD
UDB : THEADER;
PT : VECTOR;

END;

LINDATA = RECORD
UDB : THEADER;
END;

ARCDATA - RECORD
UDB : T_HEADER;
MIDPNT : VECTOR;
END;

CRLDATA = RECORD
UDB : T_HEADER;
PT1 : VECTOR;
PT2 : VECTOR;
PT3 : VECTOR

END;

F-4

CI LTM560240031U
jy 1I8g

PLNDATA = RECORD
11DB :T-HEADER;
SYMBOL :VECTOR;
NORMAL VETR

END;.VCTR

PICDATA = RECORD
11DB :T_-HEADER;
PICKPNT :SHIVECTOR;

END;

ENTBLOCK =RECORD
CASE ENTITY _TYPE OF

POINT :(PNT :PNTDATA);
LINE :(LIN : LINDATA).

PLANE (PLN :PLIIDATA);ARC :(ARC : ARCDATA);
CIRCLE (CRL : CRLDATA);

EN;PICK ENTITY : (PIC pICDATA);

F-5

CI UM560240031U
July 19&q

MODLN SAMPLE PROGRAM

MODLN - Sample program to model a line for display.

CA DESCRIPTION OF ARGUMENTS
C INPUT
C PNTRS - AN ARRAY CONTAINING THE CORRELATION OF

THE START AND END POINTS OF THE LINE
C DSPTYPE - CADD DISPLAY TYPE
C = 1, SOLID LINE
C = 2, DASHED LINE
C
C OUTPUT
C IRC -RETURN CODE
C 0 O, NORMAL RETURN
C = 18, INVALID INPUT DATA
C = 34, ERROR IN CREATION
C
CC COMMONS
C DGRPS2 - PROVIDE SYSTEM WORK AREAS

REF
DGRPS2 : T_DGRPS2;

CONST
TICKMARK = 99;

TYPE
LIN_SPCODE = (NORMAL_LINE, TICK_MARK);
LIN_DSPTYPE = (DUMMY, SOLID, DASH, CENTER, PHANTOM);

VAR
SPECIAL_CODE : INTEGER;
DISPLAY_TYPE : INTEGER;
I : INTEGER;
NEW_LINE : ENTBLOCK;
NEWLINELABEL: CHAR8;
KEYLC : LISTKEY;
KEYELN : LISTKEY;

F-6

CI UM560240031U
July 1989

MODLN SAMPLE PROGRAM (CONTINUED)

BEGIN (* MODLN STARTS HERE *)

CHECK IF DUPLICATE POINTS

IF (PNTRS(.1.) = PNTRS(.2.))
THEN
IRC := 18

ELSE
BEGIN

(* CONVERT CADD TYPE DESIGNATION TO PDDI Access Software EQUIV

CVTPSC(CADDLINE, SPECIALCODE, NEWJLINE.LIN.UDB.KIND,
NEWLINE.LIN.UDB.SUBTYPE, IDBPDDI Access Software, IRC);

(* GET A LABEL FOR THE NEW LINE

LDLABL(CADDLINE, SPECIALCODE, NEWLINELABEL, IRC);

IF IRC = 0
THEN
BEGIN

(* LOAD THE LINE BLOCK

WITH NEW LINE.LIN.UDB DO
BEGIN
SIZE := UDBSIZ(PDDI Access SoftwareLINE); (* SIZE OF

ENTITY BLOCK *)
LABEL := NEWLINE_LABEL;
DSPTYPE := DISPLAY_TYPE;

END;

CREATE LINE WITH CONSTL

MAL(KEYLC, IRC); (*CREATE EMPTY LIST*)
FOR I := 1 TO 2 DO
MALATC(KEYLC, PNTRS(.I.), IRC); (* ADD EACH END POINT TO LIST *)

MAECR(NEW LINE, KEYLC, KEYELN, IRC); (* MODEL THE ENTITY *)
IF IRC = 0
THEN

(* RECORD THE CREATE FOR VERSION CONTROL

VCCREA(KEYELN, IRC);

END;(* END OF CHECKING IRC FROM "LDLABL *)
END;(* END OF CHECKING DUPLICATE POINTERS *)

END;(*END or MODLN*)

F-7

CI UM560240031U
July 1989

CADENT SAMPLE PROGRAM

CADENT - Sample program to retrieve the type, special code, and label of an
entity.

CA DESCRIPTION OF ARGUMENTS
C INPUT
C KEYE - KEY OF THE ENTITY
C
C OUTPUT
C ENT-TYPE - ENTITY TYPE
C SPCODE - SPECIAL CODE
C ENTLABEL - ENTITY LABEL
C

VAR
I, IRC : INTEGER;
ENTITY : ENTBLOCK;

BEGIN (* CADENT STARTS HERE *)
RETRIEVE THE ENTITY ATTRIBUTE BLOCK FROM PDDI

Software *)
MAEGTK(KEYE,ENTITY, IRC);

TRANSFORM PDDI Access Software KIND TO TYPE
AND SPECIAL CODE *)

CVTPSC(ENTITY.PNT.UDB.KIND, ENTITY.PNT.UDB.SUBTYPE,
ENT-TYPE, SP CODE, CADD, IRC);

COPY LABEL OUT OF ENTITY BLOCK *)
LABEL(.I.) := ENTITY.PNT.UDB.LABEL

END;(*END OF CADENT *)

F-9

CoMMm

CI UM560240031U
July 1989

PLORY SAMPLE PROGRAM

PLQRY - Sample program retrieves an entity key and data from the pick list.

CA DESCRIPTION OF ARGUMENTS
C INPUT
C NUMPK - NUMBER OF PICKS DESIRED
C OUTPUT
C PIC_ENTITY - ATTRIBUTES OF THE PICK ENTITY
C PICKEDENTITY - ATTRIBUTES OF THE PICKED ENTITY
C IRC - RETURN CODE
C - 0, NORMAL RETURN
C = 18, INVALID INPUT DATA

VAR
PICKLIST : LISTKEY;
PICK COUNT : INTEGER;

%PAGE

BEGIN (* PLQRY STARTS HERE *)

RETRIEVE THE PICK LIST AND COUNT THE NO OF PICKS

PLKEY(PICKLIST, IRC);
MALNO(PICKLIST, PICKCOUNT, IRC);

IF (PICK-COUNT > 0) AND (.ICKCOUNT <= NUMPK)
THEN
BEGIN

RETRIEVE THE PICK ENTITY AND PICKED ENTITY

MALGTK(PICKLIST, NUMPK, PIC_EF'TITY, IRC);
MALGTK(PICKEY, 1, PICKEDKEY, IRC);
END

ELSE
IRC := 18;

END;(* END OF PLQRY *)

F-9

cownmox

CI UM560240031U
July 1989

RMBLK SAMPLE PROGRAM

RMBLK - Sample program to implement a delayed "DELETE" operation. It can be
reversed by invoking the "REJECT" function.

CA DESCRIPTION OF ARGUMENTS
C INPUT
C KEYE - KEY OF THE ENTITY TO BE DELETED
C
C OUTPUT
C IRC - RETURN CODE
C = 0, NORMAL RETURN
C = 18, INVALID INPUT DATA
C)

VAR
NUM1_OF_CNSTL : INTEGER;
NUM_OF_USERS : INTEGER;
COUNTER : INTEGER;
CNSTL : LISTKEY;
POINTUSERS : LISTEY;
ENTHEADER : ENTHEAD;
DELDISPLAY : BOOLEAN;
ENTITY : ENTBLOCK;

BEGIN (* RMBLK STARTS HEE)
(*

ADD THE ENTITY TO BE DELETED TO THE ACCEPT LIST
C)

VCDEL(KEYE, IRC);
(C

DELETE THE DISPLAY OF THE ENTITY
*)

DELEDSP(KEYE);(C

RETRIEVE THE ENTITY TO BE DELETEDC)

MAEGTK(KEYE, ENTITY, IRC);
(*

IF PLURAL ENTITY THEN FIND THE CNSTL
AND OMIT THE DISPLAY OF CNSTL

I)
IF (ENTITY.PNT.HEADER.KIND - PDDI Access Software_PCPATCH)
OR ((ENTITY.PNT.HEADER.KIND - PDDI Access Software_GROUP)
OR (ENTITY.PNT.HEADER.KIND - PDDI Access Software_BOUDEDLANE))

F.IO

CI UM560240031U
July 1989

RMBLK SAMPLE PROGRAM (CONTINUED)

THEN
BEGIN
MAECI(KEYE, CNSTL, IRC);
MALNO(CNSTL, NUM OF CNSTL, IRC);
FOR COUNTER :1 1 TO NUMOFCNSTL DO
BEGIN

DEL_DISPLAY := TRUE;
MALGTK(CNSTL, COUNTER, ENT HEADER, IRC);

IF CONSTITUENT IS A POINT THEN IF THERE
WERE USERS THEN LEAVE IT ALONE

C)

IF ENT_HEADER.KIND = PDDI Access Software_POINT
THEN

BEGIN
MAEU(ENDHEADER.KEY, POINTUSERS, IRC);
MALNO(POINT.USERS, NUM_OF_USERS, IRC);
IF NUN_OF_USERS > 0
THEN
DELDISPLAY := FALSE;

END;(* ENDIF *)
IF DEL_DISPLAY
THEN
DELDSP(ENTHEADER.KEY);

END;(* END OF DO LOOP *)
END;(* ENDIF *)

END;(* END OF RMBLK C)

F-il

ommuj

CI UM560240031U
July 1989

VCASAV SAMPLE PROGRAM

VCASAV - Sample program provides for rejecting changes to attributes.

CA DESCRIPTION OF ARGUMENTS
C INPUT
C OLDENT - OLD ENTITY BLOCK
C
C OUTPUT
C IRC - RETURN CODE
C - O, NORMAL RETURN
C = 18, INVALID INPUT DATA
*)

VAR
OPERATIONENTKEY : ENTKEY;
KEYE : ENTICEY;
REJECTLIST,CNSTL: LISTKEY;
NEWENT : ETBLOCK;

BEGIN (* VCASAV STARTS HERE *)

GET THE ATTRIBUTE OF THE OLD ENTITY AND
CREATE A NEW ENTITY WITH THAT ATTRIBUTE OiLY

NEWENT := OLDENT;
NEWENT.RPA.UDB.KIND := 0;
CNSTL := 0;
MAECR(KEYE, NEWENT, CNSTL, IRC);

CREATE AN EMPTY LIST AND ADD THE HEWENT TO IT

MAL(CNSTL, IRC);
MALTC(CNSTL, KEYS, IRC);

C*
MODEL THE "REPLACE ATTRIBUTE" OPERATION ENTITY

*)

NODOP(ORD(REPLACEATTRIBUTEOP_) CNSTL, OPERATIONENTKEY, IRC);
(C

RETRIEVE THE REJECT LIST AND ADD THE NEWLY
CREATED OPERATION ENTITY TO THE REJECT LIST

*)

VCRKEY(REJECTLIST, IRC);
MALATC(REJECTLIST, OPERATIONENTKEY, IRC);

END;(* END OF VCASAV *)

F.12

CI UM560240031U
July 1989

KNDRNG SAMPLE PROGRAM

KNDRNG - Sample program checks if the KIND is between a high and a low
boundary.

PROCEDURE KNDRNG:

REF
KNDRGI : ROUTINE;

VAR
DATA : BLKDATA;
JRC : INTEGER;

BEGIN (* KNDRNG *)
IF KEYL <> 0 THEN BEGIN
DATA.LOWKIND := LOWKIND;
DATA.HIGHKIND := HIGHKIND;
MALXEQ(KEYL, DATA. KNDRGI, OUTLIST, JRC, IRC);

END ELSE
IRC :- 1;

END (* KNDRNG *)

PROCEDURE KNDRGI(CONST KEYENT : ENTKEY;
VAR ENTBLK : ENTBLOCK;
VAR DATA : BLKDATA;
VAR IRC : INTEGER);

SUBPROGRAM

PROCEDURE KNDRGI

BEGIN (* KNDRGI *)
IF (ENTBLK.KIND >- DATA.LOWKIND)

AND (ENDBLK.KIND (n DATA.HIGHKIND) THEN

IRC : (*PUT IT ON THE OUTPUT LIST*)

ELSE

IRC - 2; (* DON'T PUT IT ON THE OUTPUT LIST ')

END; (* KNDRGI *)

F.13

CI UM560240031UJuly 1989

2tRCRD SAMPLE PROGRAM

R$RCRD - Sample program retrieves the radius of a PRS. This sample program

is written in FORTRAN.

FUNCTION R$RCRD(ICV)
REAL*4 R$RCRD
REAL*8 RADIUS
INTEGER*4 IRC,IIRCI,ICV
COMMON /PRSRAD/PRSRAD

C
CATL MAEXEQ(ICV RADIUS, PRSRAD, IRC, IIRC)
R$RCRD = RADIUS

C
RETURN
END

PROCEDURE PRSRAD(CONST KEYE : ENTKEY ,

VAR ENTDATA : ENTBLOCK ;
VAR RADIUS : REAL ;
VAR IRC : INTEGER) ;

SUBPROGRAM

PROCEDURE PRSRAD ;

BEGIN
RADIUS := ENTDATA.PRS.RADIUS ;

END;

F.14

co"W

